![2022年最新京改版七年级数学下册第八章因式分解综合测评试题(含答案及详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12692286/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第八章因式分解综合测评试题(含答案及详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12692286/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第八章因式分解综合测评试题(含答案及详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12692286/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第八章 因式分解综合与测试练习
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了若x2+ax+9=,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
2、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
3、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
4、下列各组多项式中,没有公因式的是( )
A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2y
C.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b2
5、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
6、下列各式能用公式法因式分解的是( ).
A. B. C. D.
7、下列从左边到右边的变形,是因式分解的是( )
A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)
C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z
8、下列各式从左至右是因式分解的是( )
A. B.
C. D.
9、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
10、下列多项式中能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.x2+(﹣y)2
C.(﹣x)2+(﹣y)2 D.﹣m2+1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:=_________.
2、分解因式:__.
3、在实数范围内分解因式:x2﹣3xy﹣y2=___.
4、填空:x2-2x+__________=(x-__________)2.
5、因式分解:ax2-2ax+a=_____.
三、解答题(5小题,每小题10分,共计50分)
1、(1)20032-1999×2001(公式法)
(2)16(a-b)2-9(a+b)2 (分解因式)
2、分解因式:
(1)4x2y﹣4xy2+y3.
(2)(a2+9)2﹣36a2.
3、计算:
(1)计算:(2a)3•b4÷4a3b2;
(2)计算:(a﹣2b+1)2;
(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.
4、因式分解:
(1)
(2)
(3)
5、已知,.求值:(1);(2).
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
2、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
3、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
4、D
【解析】
【分析】
直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.
【详解】
解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;
B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;
C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;
D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了公因式,掌握确定公因式的方法是解题关键.
5、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
6、A
【解析】
【分析】
利用完全平方公式和平方差公式对各个选项进行判断即可.
【详解】
解:A、,故本选项正确;
B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;
C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;
D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.
故选:A.
【点睛】
本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.
7、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.
【详解】
解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;
B、,原式错误,不符合题意;
C、x2﹣x=x(x﹣1),属于因式分解,符合题意;
D、2yz﹣y2z+z=,原式分解错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.
8、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
10、D
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
D、,可以利用平方差公式进行分解,符合题意;
故选:D.
【点睛】
本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.
二、填空题
1、
【解析】
【分析】
原式提取a,再利用完全平方公式分解即可.
【详解】
解:原式=a(m2-2mn+n2)=a(m-n)2,
故答案为:a(m-n)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、
【解析】
【分析】
会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解.
【详解】
解:,
,
,
故答案为:.
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式.
3、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
4、 1 1
【解析】
【分析】
根据配方法填空即可,加上一次项系数一半的平方.
【详解】
故答案为:1,1
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
5、
【解析】
【分析】
提取公因式后,用完全平方公式因式分解即可.
【详解】
原式=
=
故答案为:.
【点睛】
本题考查了因式分解,因式分解是初中数学的重要内容之一.选择正确的分解方法是学好因式分解的关键.因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用.因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形.
三、解答题
1、(1)12010;(2)(7a-b)(a-7b)
【解析】
【分析】
(1)运用完全平方公式和平方差公式进行计算即可;
(2)直接运用平方差公式进行计算即可.
【详解】
解:(1)20032-1999×2001
=(2000+3)2-(2000-1)(2000+1)
=20002+2×2000×3+9-(20002-12)
=20002+2×2000×3+9-20002+12
=12010
(2)16(a-b)2-9(a+b)2
=
=
=
=
【点睛】
本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键.
2、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.
【解析】
【分析】
(1)原式提取公因式y,再利用完全平方公式分解即可;
(2)原式先利用平方差公式,进一步用完全平方公式分解即可.
【详解】
解:(1)原式=y(4x2﹣4xy+y2)
=y(2x﹣y)2;
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).
【解析】
【分析】
(1)先计算乘方,再计算除法可得;
(2)利用完全平方公式计算可得;
(3)先提公因式,再利用平方差分解可得.
【详解】
(1)原式=8a3•b4÷4a3b2
=8a3b4÷4a3b2
=2b2;
(2)原式=[(a﹣2b)+1]2
=(a﹣2b)2+2(a﹣2b)+12
=a2﹣4ab+4b2+2a﹣4b+1;
(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]
=(4a﹣4b)•(﹣2a)
=﹣8a(a﹣b).
【点睛】
本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.
4、(1);(2);(3)
【解析】
【分析】
(1)利用提取公式法因式分解即可;
(2)利用提取公式法因式分解即可;
(3)提取公因式2y,在利用完全平方公式因式分解即可.
【详解】
解:(1);
(2)
(3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、(1);(2)
【解析】
【分析】
(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;
(2)由可得:由,可得再把分解因式即可得到答案.
【详解】
解:(1) ,,
则
(2)
,
【点睛】
本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列多项式,下列变形,属因式分解的是等内容,欢迎下载使用。