数学七年级下册第八章 因式分解综合与测试同步练习题
展开这是一份数学七年级下册第八章 因式分解综合与测试同步练习题,共14页。试卷主要包含了下列各式从左至右是因式分解的是,若,则E是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列因式分解正确的是( )
A. B.
C. D.
2、下列各式能用平方差公式进行分解因式的是( )
A.x2-1 B.x2+2x-1 C.x2+x+1 D.x2+4x+4
3、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
4、下列各式从左至右是因式分解的是( )
A. B.
C. D.
5、若,则E是( )
A. B. C. D.
6、下列各组式子中,没有公因式的一组是( )
A.2xy与x B.(a﹣b)2与a﹣b
C.c﹣d与2(d﹣c) D.x﹣y与x+y
7、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
8、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
9、下列各式从左到右的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.6x3y2=2x2y•3xy
C.t2﹣16+3t=(t+4)(t﹣4)+3t D.y2﹣6y+9=(y﹣3)2
10、将分解因式,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在实数范围内分解因式:x2﹣3xy﹣y2=___.
2、分解因式__________.
3、分解因式:3ab﹣6a2=__________.
4、把多项式2a3﹣2a分解因式的结果是___.
5、因式分解:______.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
2、分解因式:x3y﹣2x2y2+xy3.
3、分解因式
(1);
(2).
4、因式分解:.
5、分解因式:.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
2、A
【解析】
【分析】
两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论.
【详解】
A.能变形为x2﹣12,符合平方差公式的特点,能用平方差公式分解因式;
B.多项式含有三项,不能用平方差公式分解因式;
C.多项式含有三项,不能用平方差公式分解因式;
D.多项式含有三项,不能用平方差公式分解因式.
故选:A.
【点睛】
本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.
3、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
4、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、C
【解析】
【分析】
观察等式的右边,提取的是,故可把变成,即左边=.
【详解】
解:,
∴,
故选C.
【点睛】
本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法.
6、D
【解析】
【分析】
根据公因式是各项中的公共因式逐项判断即可.
【详解】
解:A、2xy与x有公因式x,不符合题意;
B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;
C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;
D、x﹣y与x+y没有公因式,符合题意,
故选:D.
【点睛】
本题考查公因式,熟练掌握确定公因式的方法是解答的关键.
7、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
8、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
9、D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.a(x+y)=ax+ay是整式的计算,故错误;
B.6x3y2=2x2y•3xy,不是因式分解,故错误;
C.t2﹣16+3t=(t+4)(t﹣4)+3t,含有加法,故错误;
D.y2﹣6y+9=(y﹣3)2是因式分解,正确;
故选:D.
【点睛】
本题考查了因式分解的意义,注意:把一个多项式转化成几个整式积的形式叫做因式分解.
10、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
二、填空题
1、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
2、
【解析】
【分析】
直接利用提公因式法分解因式即可.
【详解】
解:.
故答案为:.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
3、
【解析】
【分析】
利用提公因式法进行因式分解即可得.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键.
4、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、
【解析】
【分析】
直接提取公因式,再利用完全平方公式分解因式得出答案.
【详解】
解:原式
.
故答案为:.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
三、解答题
1、
【解析】
【分析】
原式先变形为,再利用提公因式法分解.
【详解】
解:原式=
=
=
【点睛】
本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.
2、
【解析】
【分析】
先提取公因式,再运用完全平方公式分解即可.
【详解】
解:x3y﹣2x2y2+xy3
=
=.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底.
3、(1);(2).
【解析】
【分析】
(1)先提公因式,再根据平方差公式因式分解即可;
(2)先根据整式的乘法展开,进而根据完全平方公式因式分解即可
【详解】
解:(1)2x3﹣18xy2 =2x(x2﹣9y2)
=2x(x+3y )(x-3y)
(2)(a﹣b)(a﹣4b)+ab=a2﹣4ab-ab+4b2+ab
=a2﹣4ab+4b2
=(a﹣2b)2
【点睛】
本题考查了提公因式法因式分解和公式法因式分解,掌握因式分解的方法是解题的关键.
4、
【解析】
【分析】
首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.
【详解】
解:原式
.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
5、x(x-3)(x+3)
【解析】
【分析】
先提取公因式x,然后利用平方差公式分解因式即可.
【详解】
解:x3-9x
=x(x2-9)
=x(x-3)(x+3).
【点睛】
本题主要考查了分解因式,熟知分解因式的方法是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共18页。试卷主要包含了把分解因式的结果是.,下列运算错误的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共15页。试卷主要包含了下列分解因式结果正确的是,下列因式分解正确的是等内容,欢迎下载使用。