初中北京课改版第八章 因式分解综合与测试随堂练习题
展开这是一份初中北京课改版第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了当n为自然数时,,将分解因式,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
2、下列从左边到右边的变形,属于因式分解的是( )
A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1
C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣1
3、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
4、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
5、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )
A.被5整除 B.被6整除 C.被7整除 D.被8整除
6、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
7、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )
A. B.
C. D.
8、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
9、将分解因式,正确的是( )
A. B.
C. D.
10、下列各式能用平方差公式进行分解因式的是( )
A.x2-1 B.x2+2x-1 C.x2+x+1 D.x2+4x+4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:=_________.
2、单项式2x2y3与6xy的公因式是_______.
3、由多项式与多项式相乘的法则可知:
即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3
即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.
同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.
请利用公式分解因式:﹣64x3+y3=___.
4、分解因式:﹣x2y+6xy﹣9y=___.
5、分解因式:=__________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1)4x2y﹣4xy2+y3.
(2)(a2+9)2﹣36a2.
2、因式分解
(1)3xy﹣6y;
(2)a2﹣4b2.
3、完成下列各题:
(1)计算:① ②
(2)因式分解:① ②
4、因式分解:
(1)9y2 - 16x2 (2)x2(x﹣y)+9(y﹣x)
(3)a 2 -4a+4 (4)-2a3+12a2-18a
5、因式分解:
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
2、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.
【详解】
解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;
x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;
x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;
(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;
故选A
【点睛】
本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.
3、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
4、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】
解:A.,单项式不能因式分解,故此选项不符合题意;
B.,是因式分解,故此选项符合题意;
C.,是整式计算,故此选项不符合题意;
D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
5、D
【解析】
【分析】
先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.
【详解】
解: (n+1)2﹣(n﹣3)2
n为自然数
所以(n+1)2﹣(n﹣3)2一定能被8整除,
故选D
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.
6、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
7、A
【解析】
【分析】
左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.
【详解】
解:由题意可得:a2−b2=(a−b)(a+b).
故选:A.
【点睛】
此题主要考查了乘法的平方差公式,属于基础题型.
8、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
9、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
10、A
【解析】
【分析】
两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论.
【详解】
A.能变形为x2﹣12,符合平方差公式的特点,能用平方差公式分解因式;
B.多项式含有三项,不能用平方差公式分解因式;
C.多项式含有三项,不能用平方差公式分解因式;
D.多项式含有三项,不能用平方差公式分解因式.
故选:A.
【点睛】
本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.
二、填空题
1、
【解析】
【分析】
原式提取a,再利用完全平方公式分解即可.
【详解】
解:原式=a(m2-2mn+n2)=a(m-n)2,
故答案为:a(m-n)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、2xy
【解析】
【分析】
由公因式的定义进行判断,即可得到答案.
【详解】
解:根据题意,
2x2y3与6xy的公因式是2xy.
故答案为:2xy.
【点睛】
本题考查了公因式的定义,解题的关键是熟记定义进行解题.
3、
【解析】
【分析】
根据题意根据立方差公式因式分解即可.
【详解】
﹣64x3+y3
故答案为:
【点睛】
本题考查了因式分解,根据题意套用立方差公式是解题的关键.
4、
【解析】
【分析】
根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
【详解】
解:﹣x2y+6xy﹣9y
故答案为:.
【点睛】
此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
5、##()(2- x)(2+x)
【解析】
【分析】
观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
三、解答题
1、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.
【解析】
【分析】
(1)原式提取公因式y,再利用完全平方公式分解即可;
(2)原式先利用平方差公式,进一步用完全平方公式分解即可.
【详解】
解:(1)原式=y(4x2﹣4xy+y2)
=y(2x﹣y)2;
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、(1);(2).
【解析】
【分析】
(1)利用提公因式法进行因式分解即可得;
(2)利用平方差公式进行因式分解即可得.
【详解】
解:(1)原式;
(2)原式,
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
3、(1)①;②;(2)①;②
【解析】
【分析】
(1)先算乘方,再算乘除,即可求解;
(2)直接个那句多项式除以单项式法则计算,即可求解;
(3)利用提出公因式法因式分解,即可求解;
(4)利用平方差公式,即可求解.
【详解】
解:①
;
②
;
(2)①
;
②
.
【点睛】
本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键.
4、(1);(2);(3);(4)
【解析】
【分析】
(1)原式直接用平方差公式进行因式分解即可;
(2)原式先提取公因式(x-y)再运用平方差公式进行因式分解即可;
(3)原式直接运用完全平方公式进行因式分解即可;
(4)原式先提取公因式-2a,再运用完全平方公式进行因式分解即可
【详解】
解:(1)9y2 - 16x2
=
=
(2)x2(x﹣y)+9(y﹣x)
= x2(x﹣y)-9(x﹣y)
=
=
(3)a 2 -4a+4
=
=
(4)-2a3+12a2-18a
=
=
【点睛】
本题主要考查了因式分解,熟练掌握乘法公式是解答本题的关键
5、
【解析】
【分析】
根据题意先提取公因式,进而利用完全平方差公式即可进行因式分解.
【详解】
解:
【点睛】
本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列多项式中有因式x﹣1的是,下列各式中,正确的因式分解是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试精练,共15页。试卷主要包含了下列因式分解正确的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共17页。试卷主要包含了下列分解因式结果正确的是等内容,欢迎下载使用。