初中北京课改版第八章 因式分解综合与测试一课一练
展开这是一份初中北京课改版第八章 因式分解综合与测试一课一练,共15页。试卷主要包含了能利用进行因式分解的是,下列各式从左至右是因式分解的是,下列因式分解正确的是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
2、下列各式能用完全平方公式进行因式分解的是( )
A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9
3、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
4、能利用进行因式分解的是( )
A. B. C. D.
5、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
6、下列多项式不能用公式法因式分解的是( )
A. B. C. D.
7、下列各式从左至右是因式分解的是( )
A. B.
C. D.
8、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
9、下列因式分解正确的是( ).
A. B.
C. D.
10、把分解因式的结果是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:3a(x﹣y)+2b(y﹣x)=___.
2、分解因式:3ab﹣6a2=__________.
3、分解因式:5x4﹣5x2=________________.
4、在实数范围内因式分解:x2﹣6x+1=_____.
5、分解因式:=__________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:.
2、分解因式
(1); (2);
(3); (4).
3、
4、(1)计算:x(x2y2﹣xy)÷x2y;
(2)分解因式:3bx2+6bxy+3by2.
5、分解因式:a3﹣a2b﹣4a+4b.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
2、A
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
【详解】
A. 9x2-6x+1 ,故该选项正确,符合题意;
B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
故选A
【点睛】
此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
3、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
4、A
【解析】
【分析】
根据平方差公式进行因式分解即可得.
【详解】
解:A、,此项符合题意;
B、不能利用进行因式分解,此项不符题意;
C、不能利用进行因式分解,此项不符题意;
D、不能利用进行因式分解,此项不符题意;
故选:A.
【点睛】
本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键.
5、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
6、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
7、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
8、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
9、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
10、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
二、填空题
1、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3a(x﹣y)+2b(y﹣x)=
故答案为:
【点睛】
本题考查了提公因式法因式分解,正确的计算是解题的关键.
2、
【解析】
【分析】
利用提公因式法进行因式分解即可得.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键.
3、5x2(x+1)(x-1)
【解析】
【分析】
直接提取公因式5x2,进而利用平方差公式分解因式.
【详解】
解:5x4-5x2=5x2(x2-1)
=5x2(x+1)(x-1).
故答案为:5x2(x+1)(x-1).
【点睛】
本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.
4、
【解析】
【分析】
将该多项式拆项为,然后用平方差公式进行因式分解.
【详解】
.
故答案为:.
【点睛】
本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.
5、##()(2- x)(2+x)
【解析】
【分析】
观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
三、解答题
1、
【解析】
【分析】
先提取公因式,然后利用十字相乘和平方差公式分解因式即可.
【详解】
解:原式=
=
=.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.
2、(1)xy(2x+y)2;(2)x(3x+5y)(3x-5y);(3)(a+1)2(a-1)2;(4)(2b-3a)2.
【解析】
【分析】
(1)先提取公因式,再利用完全平方公式继续分解即可;
(2)先提取公因式,再利用平方差公式继续分解即可;
(3)先利用平方差公式分解,再利用完全平方公式继续分解即可;
(4)利用完全平方公式分解即可.
【详解】
解:(1)
=xy(4x2+4xy+y2)
=xy(2x+y)2;
(2)
=x(9x2-25y2)
=x(3x+5y)(3x-5y);
(3)
=(a2+1+2a)( a2+1-2a)
=(a+1)2(a-1)2;
(4)
=(a+2b-4a)2
=(2b-3a)2.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
3、
【解析】
【分析】
根据平方差公式求解即可.
【详解】
解:
【点睛】
此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.
4、(1)xy-1;(2)3b(x+y)2.
【解析】
【分析】
(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;
(2)先提取公因式3b,再利用完全平方公式继续分解即可.
【详解】
解:(1)x(x2y2﹣xy)÷x2y
=(x3y2-x2y)÷x2y
=x3y2÷x2y -x2y÷x2y
=xy-1;
(2)3bx2+6bxy+3by2
=3b(x2+2xy+y2)
=3b(x+y)2.
【点睛】
本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
5、(a﹣b)(a+2)(a﹣2)
【解析】
【分析】
先分组,再提公因式,最后用平方差公式进一步进行因式分解.
【详解】
解:a3﹣a2b﹣4a+4b
=(a3﹣4a)﹣(a2b﹣4b)
=a(a2﹣4)﹣b(a2﹣4)
=(a﹣b)(a2﹣4)
=(a﹣b)(a+2)(a﹣2).
【点睛】
本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了下列因式分解正确的是,把代数式分解因式,正确的结果是,计算的值是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共17页。试卷主要包含了多项式分解因式的结果是,下列各式的因式分解中正确的是,下列因式分解错误的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试综合训练题,共15页。试卷主要包含了下列因式分解正确的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。