北京课改版七年级下册第八章 因式分解综合与测试课时训练
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )
A.216 B.108
C.140 D.684
2、下列变形,属因式分解的是( )
A. B.
C. D.
3、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
4、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
5、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
6、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )
A. B.
C. D.
7、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )
A.﹣6 B.±6 C.12 D.±12
8、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
9、下列分解因式正确的是( )
A. B.
C. D.
10、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、1002﹣992+982﹣972+962﹣952+…+22﹣12=___.
2、在实数范围内因式分解:x2﹣6x+1=_____.
3、实数范围内分解因式:x4+3x2﹣10=___.
4、因式分解:__.
5、若多项式能用完全平方公式进行因式分解,则________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:① ②
2、因式分解:
(1)3a²c-6abc+3b²c
(2)x²(m-2n)+y²(2n-m)
(3)
(4)(x﹣1)(x﹣3)+1
3、(1)计算:
①
②
(2)因式分解:
①
②
4、分解因式:
(1);
(2)
5、分解因式:.
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.
【详解】
边长为a,b的长方形的周长为18,面积为12,
,,
故选D
【点睛】
本题考查了因式分解,代数式求值,整体代入是解题的关键.
2、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
3、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
4、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
5、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
6、A
【解析】
【分析】
左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.
【详解】
解:由题意可得:a2−b2=(a−b)(a+b).
故选:A.
【点睛】
此题主要考查了乘法的平方差公式,属于基础题型.
7、D
【解析】
【分析】
利用完全平方公式的结构特征判断即可求出a的值.
【详解】
解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,
∴ax=±12x.
故选:D.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
8、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
9、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
10、B
【解析】
【分析】
平方差公式:,根据平方差公式逐一分析可得答案.
【详解】
解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;
x2-y2能用平方差公式分解因式,故(2)符合题意;
-m2+n2能用平方差公式分解因式,故(3)符合题意;
-b2-a2不能用平方差公式分解因式,故(4)不符合题意;
-a6+4能用平方差公式分解因式,故(5)符合题意;
所以能用平方差公式分解的因式有3个,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.
二、填空题
1、5050
【解析】
【分析】
先根据平方差公式进行因式分解,再计算加法,即可求解.
【详解】
解: 1002-992 + 982-972 + 962-952 +…+22-12
=(100 + 99)(100-99)+(98 + 97)(98-97)+…+(2+1)(2-1)
= 100+ 99+98+ 97+…+2+1
= 5050.
故答案为:5050
【点睛】
本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键.
2、
【解析】
【分析】
将该多项式拆项为,然后用平方差公式进行因式分解.
【详解】
.
故答案为:.
【点睛】
本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.
3、
【解析】
【分析】
先用十字相乘分解,再用平方差公式分解即可.
【详解】
解:x4+3x2﹣10
=
=
故答案为:.
【点睛】
本题考查了实数范围内因式分解,解题关键是熟练运用因式分解的方法在实数范围内进行分解.
4、
【解析】
【分析】
将当作整体,对式子先进行配方,然后利用平方差公式求解即可.
【详解】
解:原式.
故答案是:.
【点睛】
此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.
5、9或-7##-7或9
【解析】
【分析】
利用完全平方公式的结构特征判断即可求出m的值.
【详解】
解:∵多项式x2-(m-1)x+16能用完全平方公式进行因式分解,
∴m-1=±8,
解得:m=9或m=-7,
故答案为:9或-7
【点睛】
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
三、解答题
1、①;②
【解析】
【分析】
(1)原式先提取公因式,再运用平方差公式进行因式分解即可;
(2)原式先提取公因式,再运用平方差公式进行因式分解即可.
【详解】
解:①
=
=
②
=
=
=
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
2、(1);(2);(3);(4)
【解析】
【分析】
(1)原式提取公因式3c,再利用完全平方公式分解即可;
(2)原式提取公因式,再利用平方差公式分解即可;
(3)原式提取公因式2,再利用完全平方公式分解即可;
(4)先计算多项式乘多项式,再利用公式法因式分解即可.
【详解】
(1)
(2)
.
(3)==
(4)===.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
3、(1)①;②;(2)①(2m+3)(2m-3);②a(x+y)2
【解析】
【分析】
(1)①利用多项式除以单项式的计算法则求解即可;
②先利用平方差公式和多项式乘以多项式的计算法则去括号,然后合并同类项即可;
(2)①利用平方差公式分解因式即可;
②利用提取公因式和完全平方公式分解因式即可.
【详解】
解(1)①原式
;
②原式
;
(2)①原式=(2m)2-32
=(2m+3)(2m-3) ;
②原式=a(x2+2xy+y2)
=a(x+y)2.
【点睛】
本题主要考查了分解因式,多项式除以单项式,整式的混合运算,熟知相关计算法则是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)利用完全平方公式进行分解因式,即可解答;
(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
,
,
.
【点睛】
本题考查了因式分解,解决本题的关键是熟记因式分解的方法.
5、.
【解析】
【分析】
综合利用提公因式法和完全平方公式进行因式分解即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
相关试卷
这是一份2020-2021学年第八章 因式分解综合与测试课时作业,共15页。试卷主要包含了下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了多项式分解因式的结果是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了下列各式的因式分解中正确的是等内容,欢迎下载使用。