北京课改版七年级下册第八章 因式分解综合与测试课堂检测
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共16页。试卷主要包含了下列变形,属因式分解的是,多项式与的公因式是,下列运算错误的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式不能用公式法因式分解的是( )A. B. C. D.2、下列多项式中能用平方差公式分解因式的是( )A. B. C. D.3、下列各因式分解正确的是( )A. B.C. D.4、下列变形,属因式分解的是( )A. B.C. D.5、下列各组多项式中,没有公因式的是( )A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b26、多项式与的公因式是( )A. B. C. D.7、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)8、下列运算错误的是( )A. B. C. D.(a≠0)9、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.10、下列各式从左到右的变形属于因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:3y2﹣12=______________.2、因式分解:=_________.3、已知,,则代数式的值为______.4、分解因式:______.5、分解因式:__.三、解答题(5小题,每小题10分,共计50分)1、分解因式:.2、已知xy=5,x2y﹣xy2﹣x+y=40.(1)求x﹣y的值.(2)求x2+y2的值.3、因式分解:(1)3m2﹣48; (2)4x2y﹣4xy2﹣x3.4、因式分解:(1)3a2﹣6ab+3b2 (2) (x+1)(x+2)(x+3)(x+4)+15、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1(1)求M(8);M(24);M[(c+1)2]的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值. ---------参考答案-----------一、单选题1、C【解析】【分析】A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.【详解】解:A.a2-8a+16=(a-4)2,故选项A不符合题意;B. ,故选项B不符合题意;C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.2、A【解析】【分析】利用平方差公式逐项进行判断,即可求解.【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.3、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可.【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.4、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.5、D【解析】【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键.6、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.【详解】解:,,则多项式与的公因式是,故选:B.【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.7、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.8、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.9、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、B【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】A. 化为分式的积,不是因式分解,故该选项不符合题意;B. ,是因式分解,故该选项符合题意;C. ,不是积的形式,故该选项不符合题意; D. ,不是积的形式,故该选项不符合题意;故选B【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.二、填空题1、【解析】【分析】先提取公因式3,然后再根据平方差公式进行因式分解即可.【详解】解:;故答案为.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.2、【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、12【解析】【分析】把因式分解,再代入已知的式子即可求解.【详解】∵,,∴∴===3×4=12故答案为:12.【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.4、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解.【详解】解:.故答案为:.【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.5、【解析】【分析】会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解.【详解】解:,,,故答案为:.【点睛】本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式.三、解答题1、.【解析】【分析】先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.2、(1)x﹣y=10;(2)x2+y2=110.【解析】【分析】(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.【详解】解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,∴x2y﹣xy2﹣x+y=xy(x﹣y)﹣(x﹣y)=(xy﹣1)(x﹣y)∵xy=5,∴(5﹣1)(x﹣y)=40,∴x﹣y=10.(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.3、(1)3(m+4)(m﹣4);(2)﹣x(2y﹣x)2【解析】【分析】(1)先提取公因式“3”,然后利用平方差公式分解因式即可;(2)先提取公因式“x”,然后利用完全平方公式分解因式即可.【详解】(1)3m2﹣48=3(m2﹣16)=3(m+4)(m﹣4).(2)4x2y﹣4xy2﹣x3=﹣x(﹣4xy+4y2+x2)=﹣x(2y﹣x)2.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.4、(1);(2).【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.【详解】解:(1),,;(2),,,,.【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.5、(1);;1;(2);【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.【详解】解:(1)由题意得,M(8)==;M(24)==;M[(c+1)2]=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,∵x,y都是自然数,且1≤x≤y≤9,∴满足条件的“吉祥数”有15、24、33∴M(15)=,M(24)==,M(33)=,∵>>,∴所有“吉祥数”中M(d)的最大值为.【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了将分解因式,正确的是,下列分解因式结果正确的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试同步训练题,共17页。试卷主要包含了下列各式从左至右是因式分解的是,把代数式分解因式,正确的结果是,下列运算错误的是,把分解因式的结果是.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业,共17页。试卷主要包含了下列因式分解正确的是,下列因式分解正确的是.等内容,欢迎下载使用。