初中数学第八章 因式分解综合与测试课后复习题
展开这是一份初中数学第八章 因式分解综合与测试课后复习题,共14页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知a+b=2,a-b=3,则等于( )
A.5 B.6 C.1 D.
2、下列分解因式结果正确的是( )
A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)
C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)
3、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
4、下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
5、下列各式能用平方差公式进行分解因式的是( )
A.x2-1 B.x2+2x-1 C.x2+x+1 D.x2+4x+4
6、下列因式分解正确的是( )
A. B.
C. D.
7、下列从左边到右边的变形,属于因式分解的是( )
A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1
C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣1
8、下列因式分解正确的是( )
A. B.
C. D.
9、下列由左到右的变形,是因式分解的是( )
A. B.
C. D.
10、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:______.
2、分解因式:mx2﹣4mx+4m=________.
3、因式分解:______.
4、分解因式________.
5、因式分解:______.
三、解答题(5小题,每小题10分,共计50分)
1、
2、(1)运用乘法公式计算:;
(2)分解因式:.
3、因式分解:
4、分解因式:
5、分解因式:x3y﹣6x2y2+9xy3
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据平方差公式因式分解即可求解
【详解】
∵a+b=2,a-b=3,
∴
故选B
【点睛】
本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.
2、D
【解析】
【分析】
分别对四个选项进行因式分解,然后进行判断即可.
【详解】
解:A、原式=b(a2+7a-1),故不符合题意;
B、原式=3y(x2﹣x+2),故不符合题意;
C、原式=2xy(4z﹣3xy),故不符合题意;
D、原式=﹣2a(a﹣2b+3c),故符合题意.
故选D.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.
3、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
4、D
【解析】
【分析】
因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
不是化为整式的积的形式,故B不符合题意;
不是化为整式的积的形式,故C不符合题意;
是因式分解,故D符合题意;
故选D
【点睛】
本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.
5、A
【解析】
【分析】
两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论.
【详解】
A.能变形为x2﹣12,符合平方差公式的特点,能用平方差公式分解因式;
B.多项式含有三项,不能用平方差公式分解因式;
C.多项式含有三项,不能用平方差公式分解因式;
D.多项式含有三项,不能用平方差公式分解因式.
故选:A.
【点睛】
本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.
6、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
7、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.
【详解】
解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;
x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;
x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;
(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;
故选A
【点睛】
本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.
8、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
9、A
【解析】
【分析】
根据因式分解的定义,对各选项作出判断,即可得出正确答案.
【详解】
解:A、,是因式分解,故此选项符合题意;
B、,原式分解错误,故本选项不符合题意;
C、右边不是整式的积的形式,故本选项不符合题意;
D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
10、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
二、填空题
1、
【解析】
【分析】
根据提取公因式法,提取公因式即可求解.
【详解】
解:,
故答案为:.
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式法.
2、m(x-2)2
【解析】
【分析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=m(x2-4x+4)=m(x-2)2,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、
【解析】
【分析】
先提取公因式,再用完全平方公式分解即可.
【详解】
解:,
=,
=
故答案为:.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.
4、
【解析】
【分析】
原式提取m后,利用完全平方公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.
5、##
【解析】
【分析】
先提取公因式,然后利用平方差公式进行因式分解即可.
【详解】
解:,
故答案为: .
【点睛】
题目主要考查因式分解的提公因式法和平方差公式法的综合运用,熟练掌握因式分解方法是解题关键.
三、解答题
1、
【解析】
【分析】
根据平方差公式求解即可.
【详解】
解:
【点睛】
此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.
2、(1);(2)
【解析】
【分析】
(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;
(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键.
3、
【解析】
【分析】
直接提取公因式xy,再利用完全平方公式分解因式得出答案
【详解】
解:
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
4、
【解析】
【分析】
原式先变形为,再利用提公因式法分解.
【详解】
解:原式=
=
=
【点睛】
本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.
5、
【解析】
【分析】
先提取公因式xy,再根据完全平方公式分解因式.
【详解】
解:
=
【点睛】
考查了因式分解-运用公式法,要注意公式的综合应用,分解到每一个因式都不能再分解为止.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后复习题,共18页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共16页。试卷主要包含了已知x,y满足,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,下列多项式,若x2+ax+9=,下列因式分解正确的是等内容,欢迎下载使用。