初中数学北京课改版七年级下册第八章 因式分解综合与测试同步达标检测题
展开这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各式从左至右是因式分解的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
2、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
3、因式分解:x3﹣4x2+4x=( )
A. B. C. D.
4、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
5、下列各式从左至右是因式分解的是( )
A. B.
C. D.
6、下列各式中,能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab3
7、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
8、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
9、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
10、下列因式分解正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:________.
2、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_________.
3、因式分解:_______.
4、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.
5、多项式a3﹣4a可因式分解为_____.
三、解答题(5小题,每小题10分,共计50分)
1、将下列多项式分解因式:
(1)
(2)
2、分解因式
(1)
(2)
3、(1)运用乘法公式计算:;
(2)分解因式:.
4、因式分解:
(1)
(2)
5、完成下列各题:
(1)计算:① ②
(2)因式分解:① ②
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.
【详解】
解:A、,则原等式不成立,此项不符题意;
B、等式的右边不是乘积的形式,则此项不符题意;
C、是因式分解,此项符合题意;
D、等式右边中的不是整式,则此项不符题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记定义是解题关键.
2、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
3、A
【解析】
【分析】
根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.
【详解】
解:原式==
故选:A.
【点睛】
本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.
4、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
5、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、B
【解析】
【分析】
能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.
【详解】
解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;
B、,能用平方差公式分解因式,故此选项正确;
C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;
D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.
故选B.
【点睛】
本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.
7、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
8、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
9、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.
【详解】
A. ,变形是整式乘法,不是因式分解,故A错误;
B. ,右边不是几个因式乘积的形式,故B错误;
C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;
D. ,变形是整式乘法,不是因式分解,故D错误.
【点睛】
本题考查因式分解的定义,掌握因式分解的定义是解题的关键.
10、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
二、填空题
1、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
2、
【解析】
【分析】
根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解.
【详解】
解:∵分解因式x2+ax+b时,甲看错了b,分解结果为,
∴在=x2+6x+8中,a=6是正确的,
∵分解因式x2+ax+b时,乙看错了a,分解结果为,
∴在=x2+10x+9中,b=9是正确的,
∴x2+ax+b=x2+6x+9=.
故答案为:
【点睛】
本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.
3、
【解析】
【分析】
利用十字相乘法分解因式即可得.
【详解】
解:因为,且是的一次项的系数,
所以,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握十字相乘法是解题关键.
4、﹣2ab(2a﹣b)2
【解析】
【分析】
先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式=﹣2ab(4a2﹣4ab+b2)
=﹣2ab(2a﹣b)2,
故答案为:﹣2ab(2a﹣b)2.
【点睛】
本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.
5、
【解析】
【分析】
利用提公因式法、公式法进行因式分解即可.
【详解】
解:原式=,
故答案为:.
【点睛】
本题考查提公因式法、公式法分解因式,掌握公式的结构特征是正确应用的前提.
三、解答题
1、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
2、(1);(2).
【解析】
【分析】
(1)先提公因式,然后利用平方差公式因式分解即可;
(2)利用提公因式法分解因式即可.
【详解】
(1)解:原式
;
(2)解:原式
.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
3、(1);(2)
【解析】
【分析】
(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;
(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)先提取公因式,再十字相乘法进行因式分解.
(2)先去括号,再十字相乘法进行因式分解.
【详解】
解:(1)
=
=
(2)
=
=
【点睛】
本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.
5、(1)①;②;(2)①;②
【解析】
【分析】
(1)先算乘方,再算乘除,即可求解;
(2)直接个那句多项式除以单项式法则计算,即可求解;
(3)利用提出公因式法因式分解,即可求解;
(4)利用平方差公式,即可求解.
【详解】
解:①
;
②
;
(2)①
;
②
.
【点睛】
本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了下列因式分解正确的是,下列各因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业,共15页。试卷主要包含了因式分解,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。