北京课改版七年级下册第八章 因式分解综合与测试巩固练习
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共17页。试卷主要包含了因式分解等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.2、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)3、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.4、下列由左到右的变形,属于因式分解的是( )A. B.C. D.5、下列各式由左到右的变形中,属于分解因式的是( )A.a(m+n)=am+anB.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x6、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.7、下列各式中,不能用平方差公式分解因式的是( )A. B. C. D.8、因式分解:x3﹣4x2+4x=( )A. B. C. D.9、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.10、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.2、因式分解:(x2+y2)2﹣4x2y2=________3、把多项式分解因式的结果是_________.4、当x=___时,x2﹣2x+1取得最小值.5、因式分解:(1)___________;(2)___________;(3)___________;(4)___________.三、解答题(5小题,每小题10分,共计50分)1、将下列各式分解因式:(1); (2)2、把下列各式因式分解:(1) (2)3、将下列多项式进行因式分解:(1);(2).4、分解因式(1)(2)(3)(4)利用因式分解计算:5、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b2 ---------参考答案-----------一、单选题1、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.3、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.4、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.5、C【解析】【分析】把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.【详解】解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;B、,等式右边不是几个整式乘积的形式,不符合题意;C、符合因式分解定义,该选项符合题意;D、,等式右边不是几个整式乘积的形式,不符合题意.故选:C【点睛】本题考查因式分解的定义,牢记定义内容是解题的关键.6、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.故选B.【点睛】本题考查了平方差公式分解因式.关键要掌握平方差公式.8、A【解析】【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.【详解】解:原式==故选:A.【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.9、C【解析】【分析】根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.【详解】解:A、,则原等式不成立,此项不符题意;B、等式的右边不是乘积的形式,则此项不符题意;C、是因式分解,此项符合题意;D、等式右边中的不是整式,则此项不符题意;故选:C.【点睛】本题考查了因式分解的定义,熟记定义是解题关键.10、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.二、填空题1、【解析】【分析】利用十字相乘法分解因式即可.【详解】解:,故答案为:.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.2、(x-y)2(x+y)2【解析】【分析】根据平方差公式和完全平方公式因式分解即可;【详解】原式,;故答案是:.【点睛】本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.3、【解析】【分析】先提公因式,再根据十字相乘法因式分解即可.【详解】故答案为:【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.5、 【解析】【分析】(1)根据平方差公式进行因式分解即可;(2)根据完全平方公式进行因式分解即可;(3)提取公因式,进行因式分解即可;(4)利用十字相乘法进行因式分解即可.【详解】解:(1)(2)(3)(4)故答案为,,,【点睛】此题考查了因式分解的方法,涉及了公式法、提公因式、十字相乘法等有关方法,解题的关键是熟练掌握因式分解的方法.三、解答题1、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.2、(1);(2)【解析】【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 .【详解】(1),原式 ;(2) ,原式,.【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.3、(1);(2).【解析】【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可.【详解】解:(1)原式;(2)原式.【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.4、(1);(2);(3);(4)【解析】【分析】(1)先提取公因式,然后利用完全平方公式进行因式分解即可;(2)先分组再用完全平方公式进行运算,再利用平方差公式进行求解;(3)先利用完全平方公式进行因式分解,再用平方差公式进行因式分解即可;(4)分别对分子和分母进行因式分解,然后求解即可.【详解】解:(1);(2);(3);(4);【点睛】此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法以及完全平方公式和平方差公式.5、(1)(x+1)(x-7);(2)(a+5b)( a-b)【解析】【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x2﹣6x﹣7= x2﹣6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7);(2)a2+4ab﹣5b2= a2+4ab+4b2﹣9b2=(a+2b)2-(3b)2=(a+2b +3b)(a+2b-3b)=(a+5b)( a-b).【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了若x2+ax+9=,下列多项式,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列因式分解正确的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共17页。试卷主要包含了下列分解因式结果正确的是等内容,欢迎下载使用。