北京课改版七年级下册第八章 因式分解综合与测试巩固练习
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共15页。试卷主要包含了把代数式分解因式,正确的结果是,因式分解等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
2、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1
3、下列运算错误的是( )
A. B. C. D.(a≠0)
4、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
5、把代数式分解因式,正确的结果是( )
A.-ab(ab+3b) B.-ab(ab+3b-1)
C.-ab(ab-3b+1) D.-ab(ab-b-1)
6、因式分解:x3﹣4x2+4x=( )
A. B. C. D.
7、下列多项式中能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.x2+(﹣y)2
C.(﹣x)2+(﹣y)2 D.﹣m2+1
8、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
9、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
10、下列各式能用公式法因式分解的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.
2、若x+y=2,xy=-3,则x2y+xy2的值为______.
3、因式分解:______.
4、分解因式:_______.
5、分解因式:________.(直接写出结果)
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
(3)
2、因式分解:① ②
3、
4、因式分解:ab4﹣4ab3+4ab2.
5、把下列各式因式分解:
(1)
(2)
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
2、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
3、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
4、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
5、B
【解析】
【分析】
根据提公因式法因式分解,先提出,即可求得答案
【详解】
解:
故选B
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
6、A
【解析】
【分析】
根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.
【详解】
解:原式==
故选:A.
【点睛】
本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.
7、D
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
D、,可以利用平方差公式进行分解,符合题意;
故选:D.
【点睛】
本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.
8、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
9、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
10、A
【解析】
【分析】
利用完全平方公式和平方差公式对各个选项进行判断即可.
【详解】
解:A、,故本选项正确;
B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;
C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;
D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.
故选:A.
【点睛】
本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.
二、填空题
1、2或-2##-2或2
【解析】
【分析】
先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.
【详解】
解:∵a2b2+a2+b2+1=4ab,
∴a2b2-2ab+1+a2-2ab+b2=0,
∴(ab-1)2+(a-b)2=0,
又∵(ab-1)2≥0,(a-b)2≥0,
∴ab-1=0,a-b=0,
∴ab=1,a=b,
∴a2=1,
∴a=±1,
∴a=b=1或a=b=-1,
当a=b=1时,a+b=2;
当a=b=-1时,a+b=-2,
故答案为:2或-2.
【点睛】
此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.
2、-6
【解析】
【分析】
先提取公因式 再整体代入求值即可.
【详解】
解: x+y=2,xy=-3,
故答案为:
【点睛】
本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值” 是解题的关键.
3、
【解析】
【分析】
先提取公因式,再利用平方差公式计算即可得出答案.
【详解】
解:.
【点睛】
本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤.
4、x(x+2y)(x-2y)
【解析】
【分析】
先提取公因式,再用平方差公式进行分解即可.
【详解】
解:x3-4xy2
=x(x2-4y2)
=x(x+2y)(x-2y)
故答案为:x(x+2y)(x-2y)
【点睛】
本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.
5、2(x-a)(4a-2b-3c)
【解析】
【分析】
提出公因式2(x-a)即可求得结果
【详解】
解:2(x-a)(4a-2b-3c)
故答案为:2(x-a)(4a-2b-3c)
【点睛】
本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.
三、解答题
1、(1);(2);(3)
【解析】
【分析】
(1)利用提取公式法因式分解即可;
(2)利用提取公式法因式分解即可;
(3)提取公因式2y,在利用完全平方公式因式分解即可.
【详解】
解:(1);
(2)
(3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、①;②
【解析】
【分析】
(1)原式先提取公因式,再运用平方差公式进行因式分解即可;
(2)原式先提取公因式,再运用平方差公式进行因式分解即可.
【详解】
解:①
=
=
②
=
=
=
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
3、
【解析】
【分析】
根据平方差公式求解即可.
【详解】
解:
【点睛】
此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.
4、
【解析】
【分析】
先提取公因式,再利用公式法分解即可;
【详解】
原式;
【点睛】
本题主要考查了利用提取公因式法和公式法进行因式分解,准确运用公式是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)先提取公因式 再按照完全平方公式分解因式即可;
(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.
相关试卷
这是一份2020-2021学年第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列变形,属因式分解的是,已知c<a<b<0,若M=|a,把分解因式的结果是.等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试综合训练题,共16页。试卷主要包含了能利用进行因式分解的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试课后练习题,共17页。试卷主要包含了下列因式分解中,正确的是,下列因式分解正确的是等内容,欢迎下载使用。