数学七年级下册第八章 因式分解综合与测试当堂检测题
展开
这是一份数学七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了若x2+ax+9=,下列多项式,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形,属因式分解的是( )A. B.C. D.2、下列各式的因式分解中正确的是( )A. B.C. D.3、下列运算错误的是( )A. B. C. D.(a≠0)4、若x2+ax+9=(x﹣3)2,则a的值为( )A.﹣3 B.﹣6 C.±3 D.±65、下列多项式中,能用平方差公式分解因式的是( )A.a2-1 B.-a2-1 C.a2+1 D.a2+a6、下列各式由左到右的变形中,属于分解因式的是( )A.a(m+n)=am+anB.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x7、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个8、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定9、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )A.﹣6 B.±6 C.12 D.±1210、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:______.2、分解因式:_______.3、单项式2x2y3与6xy的公因式是_______.4、分解因式:mx2﹣4mx+4m=________.5、由多项式与多项式相乘的法则可知:即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x3+y3=___.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)3m2﹣48; (2)4x2y﹣4xy2﹣x3.2、因式分解:(1)(2)3、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 .4、利用因式分解计算:(1)22014﹣22013;(2)(﹣2)101+(﹣2)100.5、因式分解:(1) (2) ---------参考答案-----------一、单选题1、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.2、D【解析】【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a2+ab-ac=-a(a-b+c) ,故本选项错误;B 9xyz-6x2y2=3xy(3z-2xy),故本选项错误;C 3a2x-6bx+3x=3x(a2-2b+1),故本选项错误; D ,故本选项正确.故选:D.【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.3、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.4、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.5、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1) (a-1),正确; B、-a2-1=-( a2+1 ) ,错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1) ,错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.6、C【解析】【分析】把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.【详解】解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;B、,等式右边不是几个整式乘积的形式,不符合题意;C、符合因式分解定义,该选项符合题意;D、,等式右边不是几个整式乘积的形式,不符合题意.故选:C【点睛】本题考查因式分解的定义,牢记定义内容是解题的关键.7、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.8、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.9、D【解析】【分析】利用完全平方公式的结构特征判断即可求出a的值.【详解】解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴ax=±12x.故选:D.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.10、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.二、填空题1、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解.【详解】解:.故答案为:.【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.2、x(x+2y)(x-2y)【解析】【分析】先提取公因式,再用平方差公式进行分解即可.【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.3、2xy【解析】【分析】由公因式的定义进行判断,即可得到答案.【详解】解:根据题意,2x2y3与6xy的公因式是2xy.故答案为:2xy.【点睛】本题考查了公因式的定义,解题的关键是熟记定义进行解题.4、m(x-2)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、【解析】【分析】根据题意根据立方差公式因式分解即可.【详解】﹣64x3+y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.三、解答题1、(1)3(m+4)(m﹣4);(2)﹣x(2y﹣x)2【解析】【分析】(1)先提取公因式“3”,然后利用平方差公式分解因式即可;(2)先提取公因式“x”,然后利用完全平方公式分解因式即可.【详解】(1)3m2﹣48=3(m2﹣16)=3(m+4)(m﹣4).(2)4x2y﹣4xy2﹣x3=﹣x(﹣4xy+4y2+x2)=﹣x(2y﹣x)2.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、(1);(2)【解析】【分析】(1)先提取公因式,再十字相乘法进行因式分解.(2)先去括号,再十字相乘法进行因式分解.【详解】解:(1)==(2)==【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.3、(1)提公因式法; 2;(2)2021;(x+1)2022;(3)(1+x)n+1.【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案.【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.故答案为:(1+x)n+1.【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键.4、(1)22013;(2)﹣2100【解析】【分析】(1)根据22014=2×22013进行解答即可;(2)根据(﹣2)101=(﹣2)×(﹣2)100进行解答.【详解】解:(1)22014﹣22013=2×22013﹣22013=(2-1)×22013=22013(2)(﹣2)101+(﹣2)100=(﹣2)×(﹣2)100+(﹣2)100=(-2+1)×(﹣2)100=﹣2100.【点睛】本题主要考查因式分解,熟练掌握提公因式是解题的关键.5、(1);(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了当n为自然数时,,已知x,y满足,则的值为,能利用进行因式分解的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习题,共18页。试卷主要包含了下列多项式,下列分解因式正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列分解因式结果正确的是,下列各因式分解正确的是等内容,欢迎下载使用。