2021学年第八章 因式分解综合与测试课时训练
展开
这是一份2021学年第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、能利用进行因式分解的是( )A. B. C. D.2、下列由左到右的变形,是因式分解的是( )A. B.C. D.3、下列因式分解正确的是( )A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)4、下列各式从左到右的变形是因式分解的是( )A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)5、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)6、下列各式从左到右的变形属于因式分解的是( )A. B.C. D.7、下列因式分解正确的是( )A. B.C. D.8、下列各式中,由左向右的变形是分解因式的是( )A. B.C. D.9、下列等式中,从左到右是因式分解的是( )A. B.C. D.10、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ab=2,a﹣b=﹣4,则a2b﹣ab2=___.2、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.3、把多项式分解因式的结果是_________.4、分解因式:a3﹣2a2b+ab2=___.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、分解因式(1)(2)2、因式分解:(1)3a2﹣6ab+3b2 (2) (x+1)(x+2)(x+3)(x+4)+13、分解因式:(1)4x2y﹣4xy2+y3.(2)(a2+9)2﹣36a2.4、将下列各式分解因式:(1); (2)5、阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程.解:设,原式第一步第二步第三步第四步(1)小影同学第二步到第三步运用了因式分解的______填写选项.A.提取公因式B.平方差公式C.两数和的平方公式D.两数差的平方公式(2)小影同学因式分解的结果是否彻底?______填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式进行因式分解. ---------参考答案-----------一、单选题1、A【解析】【分析】根据平方差公式进行因式分解即可得.【详解】解:A、,此项符合题意;B、不能利用进行因式分解,此项不符题意;C、不能利用进行因式分解,此项不符题意;D、不能利用进行因式分解,此项不符题意;故选:A.【点睛】本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键.2、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C.【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.6、B【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】A. 化为分式的积,不是因式分解,故该选项不符合题意;B. ,是因式分解,故该选项符合题意;C. ,不是积的形式,故该选项不符合题意; D. ,不是积的形式,故该选项不符合题意;故选B【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.7、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、B【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.9、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.10、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.二、填空题1、-8【解析】【分析】将提取公因式,在整体代入求值即可.【详解】∵,,∴.故答案为:-8.【点睛】本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键.2、﹣2ab(2a﹣b)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab(4a2﹣4ab+b2)=﹣2ab(2a﹣b)2,故答案为:﹣2ab(2a﹣b)2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.3、【解析】【分析】先提公因式,再根据十字相乘法因式分解即可.【详解】故答案为:【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.5、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.三、解答题1、(1)4xy(y+1)2;(2)-5(a-b)2【解析】【分析】(1)提公因式后利用完全平方公式分解即可;(2)提公因式后利用完全平方公式分解即可.【详解】(1), ,=4xy(y+1)2;(2), ,=-5(a-b)2.【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.2、(1);(2).【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.【详解】解:(1),,;(2),,,,.【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.3、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.【解析】【分析】(1)原式提取公因式y,再利用完全平方公式分解即可;(2)原式先利用平方差公式,进一步用完全平方公式分解即可.【详解】解:(1)原式=y(4x2﹣4xy+y2)=y(2x﹣y)2;(2)原式=(a2+9+6a)(a2+9﹣6a)=(a+3)2(a﹣3)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.5、(1) ;(2)不彻底,;(3).【解析】【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可.【详解】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C;(2)小影同学因式分解的结果不彻底,原式 ,故答案为:不彻底,;(3)设,原式,,,,.【点睛】本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
相关试卷
这是一份数学北京课改版第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了把代数式分解因式,正确的结果是,下列分解因式正确的是,把分解因式的结果是.等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试综合训练题,共16页。试卷主要包含了已知的值为5,那么代数式的值是,下列因式分解正确的是,下列分解因式正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试当堂达标检测题,共16页。试卷主要包含了下列因式分解正确的是,把分解因式的结果是.,下列运算错误的是等内容,欢迎下载使用。