![2022年京改版七年级数学下册第九章数据的收集与表示定向测试练习题(无超纲)第1页](http://www.enxinlong.com/img-preview/2/3/12692722/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第九章数据的收集与表示定向测试练习题(无超纲)第2页](http://www.enxinlong.com/img-preview/2/3/12692722/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第九章数据的收集与表示定向测试练习题(无超纲)第3页](http://www.enxinlong.com/img-preview/2/3/12692722/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 数据的收集与表示综合与测试精练
展开这是一份数学七年级下册第九章 数据的收集与表示综合与测试精练,共20页。试卷主要包含了山西被誉为“表里山河”,意思是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在爱心一日捐活动中,我校初三部50名教师参与献爱心,以下是捐款统计表,则该校初三教师捐款金额的中位数,众数分别是( )
金额/元 | 50 | 100 | 150 | 200 | 300 |
人数 | 4 | 18 | 14 | 8 | 6 |
A.100,100 B.100,150 C.150,100 D.150,150
2、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是元/千克,且这4个单价的中位数与众数相同,则a 的值为( )
A.5 B.4 C.3 D.2
3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个 B.2个 C.3个 D.4个
4、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
5、以下是某校九年级10名同学参加学校演讲比赛的统计表:
成绩(分) | 80 | 85 | 90 | 95 |
人数(人) | 1 | 2 | 5 | 2 |
则这组数据的中位数和众数分别为( )
A.90,89 B.90,90 C.90,90.5 D.9
6、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是( )
A.4,5,4 B.4.5,5,4.5 C.4,5,4.5 D.4.5,5,4
7、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
8、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2 B.3 C.4 D.5
9、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )
城市 | 太原 | 大同 | 阳泉 | 长治 | 晋城 | 临汾 | 运城 | 吕梁 | 晋中 | 忻州 | 朔州 |
最高峰高度(米) | 2789 | 2420 | 1874 | 2523 | 2358 | 2504.3 | 2358 | 2831 | 2566.6 | 3061.1 | 2333 |
A.2420米 B.2333米 C.2504.3米 D.2566.6米
10、已知一组数据85,80,x,90的平均数是85,那么x等于( )
A.80 B.85 C.90 D.95
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:
| 鱼的条数 | 平均每条鱼的质量 |
第一次捕捞 | 20 | |
第二次捕捞 | 10 | |
第三次捕捞 | 10 |
那么,鱼塘中鲢鱼的总质量约是________kg.
2、如果一组数据中有3个6、4个,2个、1个0和3个x,其平均数为x,那么______.
3、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.
4、某班同学进行知识竞赛,将所得成绩整理成如图所示的统计图,则这次竞赛成绩的众数是_____分.
5、某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.
三、解答题(5小题,每小题10分,共计50分)
1、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
2、某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表:(单位:分)
项目应聘者 | 阅读能力 | 思维能力 | 表达能力 |
甲 | 93 | 86 | 73 |
乙 | 95 | 81 | 79 |
(1)甲、乙两人“三项测试”的平均成绩分别为______分、_______分.
(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的最后成绩,若按此成绩在甲、乙两人中录用高分的一个,谁将被录用?
3、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:
20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.
抽取的20名男生的测试成绩扇形统计图如下:
抽取的20名男生成绩得分用表示,共分成五组: :; :; :; :; :. |
其中,抽取的20名男生的测试成绩中,组的成绩如下:47,48,48,47,48,48.
抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:
性别 | 平均数 | 中位数 | 众数 |
女生 | 47.5 | 48.5 | |
男生 | 47.5 | 49 |
(1)根据以上信息可以求出:______,______,______;
(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);
(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.
4、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:
(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;
(2)求本次所抽取学生九月份“读书量”的平均数.
5、某校举办弘扬中华传统知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图:
(1)表中a的值为_________;b的值为_________.
(2)把图中的统计图补充完整;
(3)若演讲内容、语言表达、形象风度、现场效果四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.
项目 | 甲的成绩(分) | 乙的成绩(分) |
演讲内容 | 95 | 90 |
语言表达 | 90 | 85 |
形象风度 | 85 | b |
现场效果 | 90 | 95 |
平均分 | a | 90 |
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据中位数和众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数。把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数,即可求解.
【详解】
解:由表知,这组数据的第25、26个数据分别为150、150,
所以其中位数为=150,众数为100,
故选:C.
【点睛】
本题主要考查众数和中位数,解题的关键是掌握众数与中位数的定义.
2、C
【解析】
【分析】
根据统计图中的数据和题意,可以得到的值,本题得以解决.
【详解】
解:由统计图可知,前3次的中位数是3,
第4次买的西瓜单价是元千克,这四个单价的中位数恰好也是众数,
,
故选:C.
【点睛】
本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.
3、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
4、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
5、B
【解析】
【分析】
先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.
【详解】
在这一组数据中90是出现次数最多的,故众数是90,
而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,
那么由中位数的定义可知,这组数据的中位数是90.
故选:B.
【点睛】
本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.
6、C
【解析】
【分析】
根据平均数的计算公式、众数的定义、中位数的定义解答.
【详解】
解:平均数=,
数据有小到大排列为1、2、2、4、4、5、5、5、6、6,
则这组数据的众数为5,中位数为,
故选:C.
【点睛】
此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.
7、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
8、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
9、C
【解析】
【分析】
根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).
【详解】
把这11个数从小到大排列为:
1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,
共有11个数,
中位数是第6个数2504.3,
故选:C.
【点睛】
此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.
10、B
【解析】
【分析】
由平均数的公式建立关于x的方程,求解即可.
【详解】
解:由题意得:(85+x+80+90)÷4=85
解得:x=85.
故选:B.
【点睛】
本题考查了平均数,应用了平均数的计算公式建立方程求解.
二、填空题
1、3600
【解析】
【分析】
首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.
【详解】
解:每条鱼的平均重量为:千克,
成活的鱼的总数为:条,
则总质量约是千克.
故答案为:3600.
【点睛】
本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量总条数,能够根据样本估算总体.
2、1
【解析】
【分析】
利用平均数的定义,列出方程即可求解.
【详解】
解:根据题意得
,
解得:,
故答案为:1
【点睛】
本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.
3、95
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将这组数据从小到大排列得:70,78,85,95,98,127,191,
中间位置的数为:95,所以中位数为95.
故答案为:95.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
4、70
【解析】
【分析】
根据众数的定义:出现次数最多的数据为众数即可求解.
【详解】
由统计图可得这次竞赛成绩的众数是70分
故答案为70.
【点睛】
此题主要考查统计调查的应用,解题的关键是熟知众数的定义.
5、18
【解析】
【分析】
用整个圆的面积表示这个市的总人口80万,把这个市的总人口看作单位“1”,其中朝鲜族、满族和回族都是少数民族,要求该市少数民族人口数,需要先求出该市少数民族人口所占的百分比,再根据百分数乘法的意义,用总人口乘少数民族所占的百分比即可求出少数民族的人数.
【详解】
120×(6%+4%+5%)=18(万人).
该市少数民族人口共有18万人
故答案为:18.
【点睛】
解决本题关键是从图中读出数据,找出单位“1”,再根据基本的数量关系求解.
三、解答题
1、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
2、(1)84;85;(2)甲将被录用.
【解析】
【分析】
(1)由题意根据平均数的计算公式分别进行计算即可;
(2)由题意根据加权平均数的计算公式分别进行解答即可.
【详解】
解:(1)甲的平均成绩为(93+86+73)÷3=84(分),
乙的平均成绩为(95+81+79)÷3=85(分).
(2)依题意,得:
甲的成绩为:
(分),
乙的成绩为:
(分),
∵85.5>84.8,
∴甲将被录用.
【点睛】
本题考查加权平均数和算术平均数的知识,注意掌握利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
3、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.
【解析】
【分析】
(1)由扇形统计图,可求出a的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;
(2)通过比较平均数、中位数、众数的大小即可解答;
(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.
【详解】
解:(1)1-5%-5%-45%-30%=15%,
由扇形统计图中,可知,男生成绩的中位数位于D组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,
女生成绩出现次数最多的是50,因此众数是50,
故答案为:15,48,50;
(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.
(3)(人)
(人)
答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.
【点睛】
本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.
4、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.
【解析】
【分析】
(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;
(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.
【详解】
解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,
∴众数为:3;
抽取的学生总数为:人,
第30、31人“读书量”均为3本,
∴中位数为:3;
故答案为:3;3;
(2)学生“读书量”的总数为:
(本),
抽取的学生总数由(1)可得:60人,
平均数为:(本),
∴本次所抽取学生九月份“读书量”的平均数为3本.
【点睛】
题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.
5、(1)a=90 ,b=90 ;(2)见解析;(3)推荐甲同学,理由见解析
【解析】
【分析】
(1)根据平均数的计算方法求得a、b的值;
(2)由(1)求得的结果补全统计图即可;
(3)四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,比较结果即可.
【详解】
解:(1)甲同学的成绩的平均分,
乙同学的成绩的平均分:,解得:b=90;
故答案为:90,90
(2)由(1)求得乙同学的形象风度为90分,如图所示:
(3)推荐甲同学,理由如下:
由题意得,甲同学的成绩:(分)
乙同学的成绩:(分)
故甲同学的成绩比乙同学好,应该选甲.
【点睛】
本题考查的是统计表,条形统计图,平均数和加权平均数.条形统计图能清楚地表示出每个项目的数据,掌握加权平均数的计算方法是解题的关键.
相关试卷
这是一份初中第九章 数据的收集与表示综合与测试课时训练,共18页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步训练题,共18页。试卷主要包含了下列问题不适合用全面调查的是,下列调查适合作抽样调查的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共19页。试卷主要包含了山西被誉为“表里山河”,意思是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。