![2022年最新京改版七年级数学下册第九章数据的收集与表示综合训练试卷(无超纲带解析)第1页](http://www.enxinlong.com/img-preview/2/3/12692726/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第九章数据的收集与表示综合训练试卷(无超纲带解析)第2页](http://www.enxinlong.com/img-preview/2/3/12692726/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第九章数据的收集与表示综合训练试卷(无超纲带解析)第3页](http://www.enxinlong.com/img-preview/2/3/12692726/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题,共18页。试卷主要包含了下列调查中,最适合抽样调查的是,下列调查中,适合采用全面调查,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
使用寿命x/h | 80 | 120 | 160 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A. B. C. D.
2、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册 | 1 | 2 | 3 | 4 | 5 |
人数/人 | 2 | 5 | 7 | 4 | 2 |
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3 B.3,7 C.2,7 D.7,3
3、数据2,5,5,7,x,3的平均数是4,则中位数是( )
A.6 B.5 C.4.5 D.4
4、下列调查中,最适合抽样调查的是( )
A.调查某校七年级一班学生的课余体育运动情况 B.调查某班学生早餐是否有喝牛奶的习惯
C.调查某种灯泡的使用寿命 D.调查某校足球队员的身高
5、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30 B.30,30 C.25,45 D.60,45
6、下面调查中,最适合采用全面调查的是( )
A.对全国中学生视力状况的调查 B.了解重庆市八年级学生身高情况
C.调查人们垃圾分类的意识 D.对“天舟三号”货运飞船零部件的调查
7、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
8、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )
A.平均数 B.众数 C.中位数 D.最高分与最低分的差
9、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况
10、下面调查中,适合采用全面调查的是( )
A.调查全国中学生心理健康现状 B.调查你所在班级同学的身高情况
C.调查我市食品合格情况 D.调查黄河水质情况
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.
2、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A、实验技能操作B,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A:90分;实验技能操作B:75分;则该同学的最终成绩是______分.
3、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.
4、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 | 测试成绩 | |
甲 | 乙 | |
面试 | 90 | 95 |
综合知识测试 | 85 | 80 |
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
5、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.
三、解答题(5小题,每小题10分,共计50分)
1、4,7,6,3,6,3的众数是什么?
2、某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):
年收入/万元 | 3 | 8 | 10 | 20 | 50 |
被调查的消费者数/人 | 100 | 500 | 300 | 50 | 50 |
(1)根据表中数据,被调查的消费者平均年收入为多少万元?
(2)被调查的消费者年收入的中位数和众数分别是 和 万元.
(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.
3、某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:
信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).
信息二:第三组的成绩(单位:分)为:
76 76 76 73 72 75 74 71 73 74 78 76
根据信息解答下列问题:
(1)补全第二组频数分布直方图(直接在图中补全);
(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;
(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数.
4、-1,0,3,6,-1的众数是什么?
5、某校对全校2600名学生进行“新冠防疫知识”的教育活动,从中抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图(1)、图(2)两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)求本次抽查的学生共有多少人?
(2)将两幅统计图补充完整.
(3)求扇形统计图中“B”等级所对应的扇形圆心角的度数.
(4)估计全校得“D”等级的学生有多少人?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
解:这批灯泡的平均使用寿命是
=124(h),
故选:B.
【点睛】
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
2、A
【解析】
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
3、D
【解析】
【分析】
先计算出x的值,再根据中位数的定义解答.
【详解】
解:∵2,5,5,7,x,3的平均数是4,
∴,
∴x=2,
数据有小到大排列为2,2,3,5,5,7,
∴中位数是,
故选:D.
【点睛】
此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.
4、C
【解析】
【分析】
根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得.
【详解】
解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;
B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;
C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;
D、“调查某校足球队员的身高”适合全面调查,此项不符题意;
故选:C.
【点睛】
本题考查了抽样调查与全面调查,熟记定义是解题关键.
5、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
6、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.
【详解】
解:.对全国中学生视力状况的调查,适合抽样调查,故本选项不合题意;
.了解重庆市八年级学生身高情况,适合抽样调查,故本选项不合题意;
.调查人们垃圾分类的意识,适合抽样调查,故本选项不合题意;
.对“天舟三号”货运飞船零部件的调查,适合普查,故本选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、C
【解析】
【分析】
根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
9、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
10、B
【解析】
【分析】
根据全面调查和抽样调查的特点解答即可.
【详解】
解:A.调查全国中学生心理健康现状,适合抽样调查,故本选项不合题意;
B.调查你所在班级同学的身高情况,适合全面调查,故本选项符合题意;
C.调查我市食品合格情况,适合抽样调查,故本选项不合题意;
D.调查黄河水质情况,适合抽样调查,故本选项不合题意.
故选:B.
【点睛】
本题主要考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、 9万名考生的数学成绩 每名考生的数学成绩 被抽出的2000名考生的数学成绩 2000
【解析】
【分析】
根据抽样中总体、个体、样本以及样本容量的概念解答即可.
【详解】
根据题意,
在这个抽样中,总体是9万名考生的数学成绩,
个体是每名考生的数学成绩,
样本是被抽出的2000名考生的数学成绩,
样本容量是2000.
故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.
【点睛】
本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.
2、81.5
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
解:该同学的最终成绩是:(分).
故答案为:81.5.
【点睛】
此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.
3、 折线 扇形
【解析】
【分析】
根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.
【详解】
解:根据统计图的特点可知:
要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;
了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.
故答案为:折线,扇形.
【点睛】
此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.
4、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
5、22.2
【解析】
【分析】
由中位数的定义“将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据”即可判断出x的值,再利用求平均数的公式求出结果即可.
【详解】
∵这组数据由5个数组成,为奇数个,且中位数为23,
∴,
∴这组数据为25,29,20,23,14,
∴这组数据的平均数.
故答案为:22.2.
【点睛】
本题考查中位数,求平均数.掌握中位数的定义和求平均数公式是解答本题的关键.
三、解答题
1、6和3
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)得出即可.
【详解】
解:数据4,7,6,3,6,3中6和3的出现的次数最多,
∴数据4,7,6,3,6,3的众数是6和3.
【点睛】
本题考查了众数的定义,能熟记众数的定义是解此题的关键.
2、(1)10.8;(2)8, 8;(3)中位数更能反映被调查的消费者的收入水平.理由见解析.
【解析】
【分析】
(1)根据加权平均数概念:若n个数,,……,的权分别是,,……,,那么叫做这n个数的加权平均数,进行求解即可;
(2)根据中位数和众数的概念:一般地,n个数据按大小顺序排列,处于最中间的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数,进行求解即可.
(3)根据平均数与众位的区别进行分析可得出结论.
【详解】
解:(1)(万元),
答:被调查的消费者平均年收入为10.8万元;
(2)将这组数据按照由小到大排列,由于有偶数个数,所以取中间两个数的平均数,第500、501位都是8,所以被调查的消费者年收入的中位数8万元;
年收入是8万元的消费者人数是500人,人数最多,所以被调查的消费者年收入的众数是8万元;
(3)中位数更能反映被调查的消费者的收入水平,理由如下:
虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.
【点睛】
本题考查了利用图表获取信息的能力,解题的关键是理解平均数、中位数以及众数的意义以及区别与联系.
3、(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人.
【解析】
【分析】
(1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;
(2)根据众数和中位数的定义求解即可;
(3)样本估计总体,样本中不低于80分的占 ,进而估计1500名学生中不低于80分的人数.
【详解】
(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如下:
(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,
将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为 =77(分),因此中位数是77分,
故答案为:76,77;
(3)2000×=960(人),
答:该校2000名学生中成绩不低于80分的大约960人.
【点睛】
本题考查了条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
4、-1
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)得出即可.
【详解】
解:数据-1,0,3,6,-1中-1的出现的次数最多,
∴数据-1,0,3,6,-1的众数是-1.
【点睛】
本题考查了众数的定义,能熟记众数的定义是解此题的关键.
5、(1)120人;(2)见解析;(3)144°;(4)260人
【解析】
【分析】
(1)由A等级人数及其所占百分比可得总人数;
(2)总人数乘以C等级百分比求出其人数,再根据四个等级人数之和等于总人数求出D等级人数,继而分别用B、D等级人数除以总人数求出其所占百分比即可补全图形;
(3)用360°乘以样本中B对应的百分比即可;
(4)用总人数乘以样本中D等级人数所占百分比即可.
【详解】
解:(1)本次抽查的学生人数为24÷20%=120(人);
(2)C等级人数为120×30%=36(人),
D等级人数为120﹣(24+48+36)=12(人),
B等级人数所占百分比为48÷120×100%=40%,
D等级人数所占百分比为12÷120×100%=10%,
补全图形如下:
(3)扇形统计图中“B”等级所对应的扇形圆心角的度数为360°×40%=144°;
(4)估计全校得“D”等级的学生有2600×10%=260(人).
【点睛】
此题主要考查统计调查的应用没解题的关键是熟知条形统计图与扇形统计图的特点.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试巩固练习,共16页。试卷主要包含了为了解学生参加体育锻炼的情况,水果店内的5个苹果,其质量,山西被誉为“表里山河”,意思是等内容,欢迎下载使用。
这是一份数学第九章 数据的收集与表示综合与测试一课一练,共20页。试卷主要包含了一组数据分别为,下列调查适合作抽样调查的是等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。