沪科版九年级下册第24章 圆综合与测试课后练习题
展开
这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共34页。
沪科版九年级数学下册第24章圆同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )
A.1cm B.2cm C.3cm D.4cm
2、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
A. B. C. D.
3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
4、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
5、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
6、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
7、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
8、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
9、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
10、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
A.3 B.2 C.1 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
3、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.
4、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.
5、已知正多边形的半径与边长相等,那么正多边形的边数是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.
(1)求证:△APQ∽△ABC.
(2)如图2,当点C为的中点时,求AP的长.
(3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
2、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形ABC.
作法:如图,
①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
根据小明设计的尺规作图过程,解决下面的问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC= .
∵AB是直径,
∴∠ACB= ( ) (填写推理依据) .
∴△ABC是等腰直角三角形.
3、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
4、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.
(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.
5、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ÐABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
-参考答案-
一、单选题
1、B
【分析】
连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
【详解】
解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=8cm,
∴BD=AB=4(cm),
由题意得:OB=OC==5cm,
在Rt△OBD中,OD=(cm),
∴CD=OC-OD=5-3=2(cm),
即水的最大深度为2cm,
故选:B.
【点睛】
本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
2、B
【分析】
由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
【详解】
解:根据题意,如图:
∵AB是的直径,OD是半径,,
∴AE=CE,
∴阴影CED的面积等于AED的面积,
∴,
∵,,
∴,
∴;
故选:B
【点睛】
本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
3、B
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
4、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
5、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、D
【分析】
根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
【详解】
解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
∴∠ECF=90°,CE=CF,
∴△CEF是等腰直角三角形,
故选:D.
【点睛】
本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
7、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
8、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
9、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
10、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
二、填空题
1、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
2、 4
【分析】
设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
【详解】
解:设一直角边长为x,另一直角边长为(6-x),
∵三角形是直角三角形,
∴根据勾股定理,
整理得:,
解得,
这个直角三角形的斜边长为外接圆的直径,
∴外接圆的半径为cm,
三角形面积为.
故答案为;.
【点睛】
本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
3、
【分析】
如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.
【详解】
解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,
∵四边形BCDE是正方形,
∴∠BCD=∠CBE=90°,CD=BC=BE=DE,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,
∴△OCD≌△OBE(SAS),
∴OE=OD,
根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,
∵∠MCB=∠MOB=×90°=45°,
∴∠DCM=∠BCM=45°,
∵四边形BCDE是正方形,
∴C、M、E共线,∠DEM=∠BEM,
在△EMD和△EMB中,
,
∴△MED≌△MEB(SAS),
∴DM=BM===2(cm),
∴OD的最大值=2+2,即OE的最大值=2+2;
故答案为:(2+2)cm.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.
4、6
【分析】
如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
【详解】
解:如图,连接OA、OB、OC、OD、OE、OF.
∵正六边形ABCDEF,
∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
∵的周长为,
∴的半径为,
正六边形的边长是6;
【点睛】
本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
5、六
【分析】
设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
【详解】
解:设这个正多边形的边数为n,
∵正多边形的半径与边长相等,
∴OA=OB=AB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∴,
∴,
∴正多边形的边数是六,
故答案为:六.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
三、解答题
1、(1)见解析;(2)(3)当,时,;当时,.
【分析】
(1)通过证,,即可得;
(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
(3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
【详解】
证明:(1)∵AQ⊥AP
∴
∵BC是⊙O的直径
∴
∴
∵
∴
(2)如图,连接CD,PD
∵BC是⊙O的直径
∴
∵AB=3,AC=4
∴利用勾股定理得:,即直径为5
∵
∴
∴DP是⊙O的直径,且DP=BC=5
∵点C为的中点
∴CD=PC
∵
∴
∴是等腰直角三角形
∴利用勾股定理得:,则
∵,
∴
∵
∴
∴,即:
∴
∴
∵
∴,即:
∴
(3)连接AO,OD,OP,CD,OD交AC于点M
∵(已证)
∴OD,OP共线,为⊙O的直径
情况一:当时
∵,
∴
∴AP=PC
∵
∴
∴
∴即
∵AP=PC
∴
∴在中,
∴
∴在中,
情况二:当时,
∵
∴
∴
同情况一:
情况三:当时
∵,
∴
∴,
∵OA=OD
∴
∴
∴
综上所述,当,时,;当时,.
【点睛】
本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
2、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
【分析】
(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
【详解】
(1)①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
(2)证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC=BC.
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角) .
∴△ABC是等腰直角三角形.
故答案为:BC,90°,直径所对的圆周角是直角.
【点睛】
本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.
3、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
4、
(1),证明见解析
(2)成立,证明见解析
(3)
【分析】
(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
(1)
解:,证明如下:
设,
在中,,
,
由旋转的性质得:,
,和都是等边三角形,
,
,
是等边三角形,
,
;
(2)
解:成立,证明如下:
如图,在上截取,连接,
由旋转的性质得:,
,
,
在和中,,
,
,
,
,
;
(3)
解:如图,当点三点在一条直线上时,
由旋转的性质得:,
,
在和中,,
,
,
则旋转角.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
5、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。
这是一份初中数学第24章 圆综合与测试巩固练习,共32页。
这是一份2021学年第24章 圆综合与测试课时练习,共30页。