初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后练习题
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后练习题,共20页。
京改版七年级数学下册第九章数据的收集与表示专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
2、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
3、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )
姓名 | 平时 | 期中 | 期末 | 总评 |
小明 | 90 | 90 | 85 |
|
A.86分 B.87分 C.88分 D.89分
4、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
5、5G是新一代信息技术的发展方向和数字经济的重要基础,预计我国5G商用将直接创造更多的就业岗位.小明准备到一家公司应聘普通员,他了解到该公司全体员工的月收入如下:
月收入/元 | 45000 | 19000 | 10000 | 5000 | 4500 | 3000 | 2000 |
人数 | 1 | 2 | 3 | 6 | 1 | 11 | 1 |
对这家公司全体员工的月收入,能为小明提供更为有用的信息的统计量是( )A.平均数 B.众数 C.中位数 D.方差
6、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:
成绩(分) | 36 | 40 | 43 | 46 | 48 | 50 | 54 |
人数(人) | 2 | 5 | 6 | 7 | 8 | 7 | 5 |
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是48分
C.该班学生这次考试成绩的中位数是47分
D.该班学生这次考试成绩的平均数是46分
7、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
8、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
9、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
10、某校在计算学生的数学总评成绩时,规定期中考试成绩占,期末考试成绩占,林琳同学的期中数学考试成绩为分,期末数学考试成绩为分,那么他的数学总评成绩是( )
A.分 B.分 C.分 D.分
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.
2、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.
3、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:
①2013~2017年,某市研究与试验经费支出连年增高;
②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;
③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.
4、九(1)班同学为灾区小朋友捐款.全班40%的同学捐了10元,30%的同学捐了5元,20%的同学捐了2元,还有10%的同学因为自身家庭经济原因没捐款.则这次全班平均每位同学捐款____元.
5、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、两个人群A,B的年龄(单位;岁)如下:
A:13,13,14,15,15,15,15,16,17,17;
B:3,4,4,5,5,6,6,6,54,57.
(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
2、学校小卖部有A,B,C,D,E五种冷饮销售,它们的单价依次是5元、3元、2元、1元和0.5元.某天的冷饮销售情况如图所示,那么,这天该小卖部销售的冷饮的单价的平均值是多少元?
3、近日,某学校开展党史学习教育进校园系列活动,组织七、八年级全体学生开展了“学党史、立志向、修品行、练本领”的网上知识竞赛活动,为了解竞赛情况,从两个年级各随机抽取了15名同学的成绩(满分为100分),收集数据为:
七年级90,95,95,80,90,80,85,90,85,100,85,90,90,85,95;
八年级85,85,95,80,95,90,90,90,100,95,80,85,90,95,90.
【整理数据】
分数 | 80 | 85 | 90 | 95 | 100 |
七年级 | 2人 | 4人 | 5人 | 3人 | 1人 |
八年级 | 2人 | 3人 | 5人 | a人 | 1人 |
【分析数据】
| 平均数 | 中位数 | 众数 | 方差 |
七年级 | 85 | b | 90 | 33 |
八年级 | 89.7 | 90 | c | 30 |
根据以上信息回答下列问题:
(1)请直接写出表格中a,b,c的值;
(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;
(3)该校七、八年级共有1200人,本次竞赛成绩不低于90分的为“优秀”,请估计这两个年级共有多少名学生达到“优秀”.
4、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试.他们的各项成绩(百分制)如下:
应试者 | 听 | 说 | 读 | 写 |
甲 | 85 | 83 | 78 | 75 |
乙 | 73 | 80 | 85 | 82 |
(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
5、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
---------参考答案-----------
一、单选题
1、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
2、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
3、B
【解析】
【分析】
根据加权平均数的公式计算即可.
【详解】
解:小明该学期的总评得分=分.
故选项B.
【点睛】
本题考查加权平均数,掌握加权平均数公式是解题关键.
4、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
5、B
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然小明想了解到该公司全体员工的月收入,那么应该是看多数员工的工资情况,故值得关注的是众数.
【详解】
解:由于众数是数据中出现次数最多的数,故小明应最关心这组数据中的众数.
故选:B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
6、D
【解析】
【分析】
由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.
【详解】
解:该班一共有:2+5+6+7+8+7+5=40(人),
得48分的人数最多,众数是48分,
第20和21名同学的成绩的平均值为中位数,中位数为(分),
平均数是(分),
故A、B、C正确,D错误,
故选:D.
【点睛】
本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.
7、C
【解析】
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
8、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
10、D
【解析】
【分析】
根据加权平均数的计算方法列式计算即可.
【详解】
解:他的数学总评成绩是分,
故选:D.
【点睛】
本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.
二、填空题
1、5.25
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:6,4,10的权数分别是2,5,1,
∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.
故答案为5.25.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
2、7
【解析】
【分析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10
中位数:(6+8)÷2=7
故答案为:7.
【点睛】
本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.
3、①③
【解析】
【分析】
根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.
【详解】
解:因为,
所以2013~2017年,某市研究与试验经费支出连年增高,①正确;
2014年比2013年实际增长量为(亿元),
2015年比2014年实际增长量为(亿元),
2016年比2015年实际增长量为(亿元),
2017年比2016年实际增长量为(亿元),
由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;
因为115.2>100.6,
所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;
综上,正确的有①③,
故答案为:①③.
【点睛】
本题考查了统计图,读懂统计图是解题关键.
4、5.9
【解析】
【分析】
设总人数为x求平均值即可.
【详解】
设全班人数为x人
则平均每位同学捐款为: (元)
故答案为:5.9
【点睛】
本题考查平均数的知识,熟练掌握求值方法是解题的关键.
5、108°
【解析】
【分析】
先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:,利用360°×30%计算即可.
【详解】
解:统计的人数为:60+90+150=300人,
骑自行车的人数为:90人,
骑自行车的人数所占百分比为:,
∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.
故答案为:108°.
【点睛】
本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.
三、解答题
1、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.
【解析】
【分析】
(1)根据平均数、中位数和众数的定义,并且结合题意求解;
(2)根据平均数、中位数和众数的定义,并且结合题意求解.
【详解】
解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),
这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),
15出现了4次,次数最多,所以众数是15岁;
用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;
(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),
这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),
6出现了3次,次数最多,所以众数是6岁;
平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.
【点睛】
本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.
2、1.985元
【解析】
【分析】
根据加权平均数可直接进行求解.
【详解】
解:由题意得:
(元),
答:这天该小卖部销售的冷饮的单价的平均值是1.985元.
【点睛】
本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.
3、(1)a=4,b=90,c=90 (2)八年级,平均值大,方差小;(3)760
【解析】
【分析】
(1)由题意根据提供数据确定八年级95分的人数,利用众数、中位数分别确定其他未知数的值即可;
(2)根据题意直接利用平均数、众数及方差确定哪个年级的成绩好即可;
(3)根据题意用样本的平均数估计总体的平均数即可.
【详解】
解:(1)观察八年级95分的有4人,故a=4;
七年级的成绩从小到大排列为:80,80,85,85,85,85,90,90,90,90,90,95,95,95,100;
七年级的中位数为90,故b=90;
八年级中90分的最多,八年级的众数为90,故c=90,
∴a=4,b=90,c=90;
(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;
(3)1200×=760(名),
∴估计这两个年级共有760名学生达到“优秀”.
【点睛】
本题考查中位数、众数、平均数、方差等统计基础知识,明确相关统计量表示的意义及相关计算方法是解题的关键.
4、(1)从成绩看,应该录取甲;(2)从成绩看,应该录取乙.
【解析】
【分析】
利用加权平均数的计算公式计算即可.
【详解】
解:(1)听、说、读、写的成绩按的比确定,
则甲的平均成绩为:(分).
乙的平均成绩为:(分).
显然甲的成绩比乙高,
所以从成绩看,应该录取甲.
(2)听、说、读、写的成绩按照的比确定,
则甲的平均成绩为:(分).
乙的平均成绩为:(分).
显然乙的成绩比甲高,
所以从成绩看,应该录取乙.
【点睛】
本题考查了加权平均数的应用,熟练掌握加权平均数的计算公式是解题的关键.
5、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了水果店内的5个苹果,其质量等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。