![精品解析京改版七年级数学下册第九章数据的收集与表示难点解析试题(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12693121/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第九章数据的收集与表示难点解析试题(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12693121/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第九章数据的收集与表示难点解析试题(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12693121/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共17页。试卷主要包含了数据,,,,,的众数是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.101万名考生 B.101万名考生的数学成绩
C.2000名考生 D.2000名考生的数学成绩
2、一组数据分别为:、、、、、,则这组数据的中位数是( )
A. B. C. D.
3、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
4、2021年正值中国共产党建党100周年,某校开展“敬建党百年,传承红色基因”读书活动.为了了解某班开展的学习党史情况,该校随机抽取了9名学生进行调查,他们读书的本数分别是3、2、3、2、5、1、2、5、4,则这组数据的众数是( )
A.2 B.3 C.3和5 D.5
5、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30 B.30,30 C.25,45 D.60,45
7、数据,,,,,的众数是( )
A. B. C. D.
8、在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8,则小丽该周每天的平均睡眠时间是( )
A.7小时 B.7.5小时 C.8小时 D.9小时
9、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况
10、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.
2、数据1,2,4,5,2的众数是 _____.
3、下列抽样调查较科学的有________.
①小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝;
②小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况;
③小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;
④小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查.
4、某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.
5、某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的,理论测试占,体育技能测试占,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中___________的成绩对学期成绩的影响最大.
三、解答题(5小题,每小题10分,共计50分)
1、某音像制品店某一天的销售的情况如图:
(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?
(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?
2、体育老师对七年级男生进行引体向上测验,以做7个为标准,超过的个数用正数表示,不足的个数用负数表示,下表是第四小组7名男生的成绩记录:
姓名 | 小明 | 小彬 | 小亮 | 小山 | 小强 | 小刚 | 小飞 |
与标准个数的差值 | 2 | -1 | 0 | 3 | -2 | -3 | 1 |
(1)将上表中各人与标准个数的差值按从低到高的顺序进行排列;
(2)成绩最差的是谁?他与最好成绩相差多少?
(3)平均每人做了多少个引体向上?
3、从一批零件毛坯中抽取10个,称得它们的质量(单位;g)如下:400.0,400.3,401.2,398.9,399.8,399.8,400.0,400.5,399.7,399.8,求这10个零件的平均质量.
4、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:
(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;
(2)求本次所抽取学生九月份“读书量”的平均数.
5、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)直接在图①中补全条形统计图;
(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);
(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.
【详解】
解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩.
故选:D
【点睛】
本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念.
2、D
【解析】
【分析】
将数据排序,进而根据中位数的定义,可得答案.
【详解】
解:数据、、、、、从小到大排列后可得:、、、、、,
排在中间的两个数是79,81,
所以,其中位数为,
故选:D.
【点睛】
本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、D
【解析】
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
4、A
【解析】
【分析】
找到这组数据中出现次数最多的数,即可求解.
【详解】
解:这组数据3,2,3,2,5,1,2,5,4中,出现次数最多的是2分,因此众数是2;
故选:A.
【点睛】
本题考查众数的定义,属于基础题型.
5、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
6、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
7、D
【解析】
【分析】
根据众数是一组数据中出现次数最多的数据可求解.
【详解】
解:数据,,,,,的众数是3.
故选择:D.
【点睛】
本题考查众数,掌握众数定义是解题关键.
8、C
【解析】
【分析】
根据平均数的定义列式计算即可求解.
【详解】
解:(8+9+7+9+7+8+8)÷7=8(小时).
故小丽该周平均每天的睡眠时间为8小时.
故选:C.
【点睛】
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
9、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
10、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
二、填空题
1、 10 9
【解析】
【分析】
先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;
【详解】
解:由题意可把数据按由小到大的顺序排列为6、8、10、10,
所以该组数据的中位数为9,众数为10;
故答案为10,9
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
2、2
【解析】
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
3、①④.
【解析】
【分析】
根据抽样调查的方式逐个分析即可
【详解】
小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝,故①的调查方法合适,符合题意;
琪为了了解某市2007年的平均气温,应该查询每个月的气温情况,故②的调查方法不科学,不符合题意;
小明为了了解初中三个年级学生的平均身高,应该在七、八、九年级各抽一个班学生做调查,故③的调查方法不科学,不符合题意;
小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查,故③的调查方法符合题意.
综上所述,符合题意的有①④.
故答案为①④.
【点睛】
本题考查了抽样调查,理解抽样调查的方式是解题的关键.
4、18
【解析】
【分析】
用整个圆的面积表示这个市的总人口80万,把这个市的总人口看作单位“1”,其中朝鲜族、满族和回族都是少数民族,要求该市少数民族人口数,需要先求出该市少数民族人口所占的百分比,再根据百分数乘法的意义,用总人口乘少数民族所占的百分比即可求出少数民族的人数.
【详解】
120×(6%+4%+5%)=18(万人).
该市少数民族人口共有18万人
故答案为:18.
【点睛】
解决本题关键是从图中读出数据,找出单位“1”,再根据基本的数量关系求解.
5、 80.4 体育技能测试
【解析】
【分析】
利用加权平均数的求解方法进行求解即可得到答案.
【详解】
解:∵体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,
∴这名同学的成绩,
∵体育技能测试占60%,占的比重最大,
∴体育技能测试的成绩对学期成绩的影响最大.
故答案为:80.4,体育技能测试.
【点睛】
本题主要考查了加权平均数,解题的关键在于能够熟练掌握加权平均数的求解方法.
三、解答题
1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.
【解析】
【分析】
(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.
(2)根据条形统计图的特点回答即可.
【详解】
解:(1)从条形统计图看,
民歌类唱片销售量为:80(张),
流行歌曲唱片销售量为:120(张),
∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2、(1)-3<-2<-1<0<1<2<3;(2)小刚成绩最差,他与最好成绩相差 6个;(3)平均每人做了7个引体向上
【解析】
【分析】
(1)将各人与标准个数的差值按从低到高的顺序进行排列即可;
(2)根据表格可知小刚成绩最差,他与最好成绩相差 3-(-3)= 6个;
(3)计算出每个人做的引体向上的个数后相加,求平均数即可.
【详解】
解:(1)-3<-2<-1<0<1<2<3;
(2)3-(-3)= 6,
小刚成绩最差,他与最好成绩相差 6个;
(3),
平均每人做了7个引体向上.
【点睛】
本题考查正数和负数的意义及有理数加减混合运算,求平均数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示;理解“正”和“负”的相对性并熟练掌握有理数混合运算法则是解题关键.
3、400.0g
【解析】
【分析】
根据平均数的求法可直接进行求解.
【详解】
解:由题意得:
(g)
答:这10个零件的平均质量为400.0g.
【点睛】
本题主要考查平均数,熟练掌握求一组数据的平均数是解题的关键.
4、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.
【解析】
【分析】
(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;
(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.
【详解】
解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,
∴众数为:3;
抽取的学生总数为:人,
第30、31人“读书量”均为3本,
∴中位数为:3;
故答案为:3;3;
(2)学生“读书量”的总数为:
(本),
抽取的学生总数由(1)可得:60人,
平均数为:(本),
∴本次所抽取学生九月份“读书量”的平均数为3本.
【点睛】
题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.
5、(1)见解析;(2)36;(3)450
【解析】
【分析】
(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;
(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;
(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.
【详解】
(1)调查的总人数是80÷40%=200(人),
参加艺术社团的人数是200×20%=40(人),
参加其它社团的人数200−80−40−60=20(人),
∴补全条形统计图如下:
(2)它类课程在扇形统计图中所占圆心角的度数是,
故答案为:36;
(3)(人),
∴估计该校喜欢文学类课程的学生450人.
【点睛】
此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.
相关试卷
这是一份数学七年级下册第九章 数据的收集与表示综合与测试复习练习题,共18页。试卷主要包含了下列说法中,下列调查中,适合采用全面调查等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共17页。试卷主要包含了水果店内的5个苹果,其质量,下列说法中正确的是,下列调查中,适合采用全面调查,一组数据中的中位数等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时训练,共18页。试卷主要包含了山西被誉为“表里山河”,意思是,一组数据中的中位数等内容,欢迎下载使用。