初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。
京改版七年级数学下册第九章数据的收集与表示专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、水果店内的5个苹果,其质量(单位:g)分别是:200,300,200,240,260关于这组数据,下列说法正确的是( )
A.平均数是240 B.中位数是200
C.众数是300 D.以上三个选项均不正确
2、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )
A.每月阅读数量的平均数是 B.众数是
C.中位数是 D.每月阅读数量超过的有个月
3、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )
A.96.00,95.70 B.96.00,96.00
C.96.00,82.50 D.95.70,96.00
4、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89 B.90 C.91 D.92
5、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
6、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
7、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的( )
A.平均数 B.加权平均数 C.众数 D.中位数
8、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
9、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.101万名考生 B.101万名考生的数学成绩
C.2000名考生 D.2000名考生的数学成绩
10、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( )
A.90 B.90.3 C.91 D.92
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:
活动项目 | 体育运动 | 学科兴趣小组 | 音乐 | 舞蹈 | 美术 |
人数(人) | 15 | 12 | 10 | 5 | 8 |
(1)全班同学最感兴趣的课外活动项目是______;
(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.
2、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 | 测试成绩 | |
甲 | 乙 | |
面试 | 90 | 95 |
综合知识测试 | 85 | 80 |
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
3、下列调查中,用全面调查方式收集数据的有________.
①为了了解学生对任课教师的意见,学校要求全体学生网上匿名评价教师;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;
③某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;
④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.
4、某单位要招聘1名英语翻译,小亮参加招聘考试的各门成绩如表所示:
项目 | 听 | 说 | 读 | 写 |
成绩(分) | 70 | 90 | 85 | 85 |
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则小亮的平均成绩为_____.
5、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:
测试项目 | 创新能力 | 综合知识 | 语言表达 |
测试成绩/分 | 72 | 80 | 96 |
如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.
三、解答题(5小题,每小题10分,共计50分)
1、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
2、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.
(1)本次活动共有多少篇论文参加评比?
(2)哪组上交的论文数量最多?是多少?
(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?
3、某音像制品店某一天的销售的情况如图:
(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?
(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?
4、八年级一班共有学生46人,学生的平均身高是1.58m,小明身高1.59m,但小明说他的身高在全班是中等偏下的,班上有25位同学比他高,20位同学比他矮,这可能吗?
5、根据下列统计图,写出相应分数的平均数、众数和中位数.
(1)
(2)
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据平均数、中位数和众数的定义分别对每一项进行分析,即可得出答案.
【详解】
A、平均数是:×(200+300+200+240+260)=240(g),故本选项正确,符合题意;
B、把这些数从小到大排列为:200,200,240,260,300,中位数是240g,故本选项错误,不符合题意;
C、众数是200g,故本选项错误,不符合题意;
D、以上三个选项A选项正确,故本选项错误,不符合题意;
故选:A.
【点睛】
此题考查了平均数、中位数和众数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
2、D
【解析】
【分析】
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
解:A、每月阅读数量的平均数是,故A错误,不符合题意;
B、出现次数最多的是,众数是,故B错误,不符合题意;
C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;
D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;
故选:D.
【点睛】
本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
3、B
【解析】
【分析】
众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.
【详解】
解:在这一组数据中96.00是出现次数最多的,故众数是96.00;
将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.
故选:B.
【点睛】
本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.
4、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
5、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
7、D
【解析】
【分析】
根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.
【详解】
解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.
故选:D.
【点睛】
本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.
8、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
9、D
【解析】
【分析】
根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.
【详解】
解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩.
故选:D
【点睛】
本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念.
10、D
【解析】
【分析】
根据加权平均数计算.
【详解】
解:小明的平均成绩为分,
故选:D.
【点睛】
此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.
二、填空题
1、 体育运动 10
【解析】
【分析】
(1)从统计表中直接通过比较即可得到.
(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.
【详解】
解:从统计表分析人数可得到结论.由表可得:
(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;
(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=.
故答案为:(1)体育运动;(2)10,
【点睛】
本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.
2、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
3、①③
【解析】
【分析】
根据抽样调查和全面调查的特点依次分析各项即可判断.
【详解】
解:①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查,属于全面调查;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查,属于抽样调查;
③某班学生拟组织一次春游活动,为了确定春游的地点,向同学进行调查,属于全面调查;
④了解全班同学的作业完成情况,对学号为奇数的学生进行调查,属于抽样调查;
故答案为:①③
【点睛】
本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识.
4、82
【解析】
【分析】
根据加权平均数的计算公式进行计算即可.
【详解】
解:小亮的平均成绩为:
(70×3+90×3+85×2+85×2)÷(3+3+2+2)
=(210+270+170+170)÷10
=820÷10
=82(分).
故小亮的平均成绩为82分.
故答案为:82.
【点睛】
本题考查了加权平均数,理解加权平均数的计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.
5、78
【解析】
【分析】
由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式
,即可得到答案.
【详解】
解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩
∴=78(分).
则该应聘者的总成绩是78分.
故答案为:78
【点睛】
本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.
三、解答题
1、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
2、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高
【解析】
【分析】
(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;
(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;
(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.
【详解】
解:(1)第二组的频率是=0.15
总篇数是18÷0.15=120(篇),
则本次活动共有120篇论文参加评比.
(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,
则计算可知第四组上交的论文数量最多,有36篇.
(3)第六组的论文的频数=120×0.05=6篇;
第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;
56%<67%,
则第六组的获奖率较高.
【点睛】
本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.
3、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.
【解析】
【分析】
(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.
(2)根据条形统计图的特点回答即可.
【详解】
解:(1)从条形统计图看,
民歌类唱片销售量为:80(张),
流行歌曲唱片销售量为:120(张),
∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、可能
【解析】
【分析】
利用平均数与总体的关系来考虑.
【详解】
解:可能.
班上有25个同学比他高,即在平均线以下的同学占少数,但比小明高的同学的身高比平均身高高,可幅度不大,比小明低的同学的身高比平均身高低的幅度大,故还是有可能的.
【点睛】
本题不是直接求平均数,而是利用平均数的概念综合来分析,平均数受极值的影响较大.
5、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分
【解析】
【分析】
(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;
(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.
【详解】
解:
(1)平均分数为:,
从图中可得:有21人得3分,众数为3分,
共有40人,将分数从小到大排序后,第20和21位都是3分,
∴中位数为3分,
∴平均分数为3分,众数为3分,中位数为3分;
(2)平均分数为:,
扇形统计图中分占比,大于其他分数的占比,众数为3分;
中位数在的比例中,中位数为3分;
∴平均分数为3.42分,众数为3分,中位数为3分.
【点睛】
题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试复习练习题,共19页。试卷主要包含了下列做法正确的是,一组数据x等内容,欢迎下载使用。
这是一份数学七年级下册第九章 数据的收集与表示综合与测试同步测试题,共19页。试卷主要包含了有一组数据,下列调查中,最适合采用全面调查,已知一组数据,下列调查中,适合采用全面调查,下列做法正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 数据的收集与表示综合与测试同步练习题,共19页。试卷主要包含了已知一组数据,下列调查中,适合用普查方式的是等内容,欢迎下载使用。