初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共18页。
京改版七年级数学下册第九章数据的收集与表示综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )
A.152,134 B.146,146 C.146,140 D.152,140
2、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册 | 1 | 2 | 3 | 4 | 5 |
人数/人 | 2 | 5 | 7 | 4 | 2 |
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3 B.3,7 C.2,7 D.7,3
3、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是( )
A.200名学生的视力是总体的一个样本 B.200名学生是总体
C.200名学生是总体的一个个体 D.样本容量是1200名
4、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )
排名 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
代表团 | 山东 | 广东 | 浙江 | 江苏 | 上海 | 湖北 | 福建 | 湖南 | 四川 | 辽宁 |
金牌数 |
A.36 B.27
C.35.5 D.31.5
5、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
6、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
使用寿命x/h | 80 | 120 | 160 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A. B. C. D.
7、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
8、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89 B.90 C.91 D.92
9、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个.
①这种调查采用了抽样调查的方式,
②7万名考生是总体,
③1000名考生是总体的一个样本,
④每名考生的数学成绩是个体.
A.2 B.3 C.4 D.0
10、已知一组数据85,80,x,90的平均数是85,那么x等于( )
A.80 B.85 C.90 D.95
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若数据,,的平均数是3,则数据,,的平均数是____.
2、下列调查中,调查方式选择正确的是_____.
①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.
3、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____
4、一组数据:2,5,7,3,5的众数是________.
5、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:
测试项目 | 创新能力 | 综合知识 | 语言表达 |
测试成绩/分 | 72 | 80 | 96 |
如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.
三、解答题(5小题,每小题10分,共计50分)
1、如图是连续十周测试甲、乙两名运动员体能情况的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.
(1)请根据图中所提供的信息填写下表:
| 平均数(分) | 中位数(分) | 体能测试成绩合格次数(次) |
甲 |
|
|
|
乙 |
|
|
|
(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好;②依据平均数与中位数比较甲和乙, 的体能测试成绩较好;
(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.
2、用直尺测量你的“拃长”,连续测量10次,计算这10次“拃长”的平均数,这样你就有了一把自己的“尺子”了,试用这把“尺子”测量课桌的长度.你还能在自己的身上找到其他的“尺子”吗?
3、2020年东京奥运会于2021年7月23日至8月8日举行,跳水比赛是大家最喜爱观看的项目之一,其计分规则如下:
a.每次试跳的动作,按照其完成难度的不同对应一个难度系数H;
b.每次试跳都有7名裁判进行打分(0~10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和2个最低分,剩下3个得分的平均值为这次试跳的完成分p;
c.运动员该次试跳的得分A=难度系数H×完成分p×3
在比赛中,某运动员一次试跳后的打分表为:
难度系数 | 裁判 | 1# | 2# | 3# | 4# | 5# | 6# | 7# |
3.5 | 打分 | 7.5 | 8.5 | 7.5 | 9.0 | 7.5 | 8.5 | 8.0 |
(1)7名裁判打分的众数是 ;中位数是 .
(2)该运动员本次试跳的得分是多少?
4、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.
(1)写出这20个数据的平均数、中位数、众数;
(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?
5、某单位要招聘1名英语翻译,甲、乙两人报名参加了4项素质测试,成绩如下(单位:分):
| 听 | 说 | 读 | 写 |
甲 | 90 | 80 | 85 | 78 |
乙 | 78 | 82 | 85 | 88 |
如果把听、说、读、写的成绩按3:3:2:2计算素质测试平均成绩,那么谁的平均成绩高?请说明理由.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
解:出现了2次,出现的次数最多,
这组数据的众数是146个;
把这些数从小到大排列为:121,122,134,146,146,152,
则中位数是(个.
故选:.
【点睛】
本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.
2、A
【解析】
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
3、A
【解析】
【分析】
根据总体,样本,个体,样本容量的定义,即可得出结论.
【详解】
解:A.200名学生的视力是总体的一个样本,故本选项正确;
B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;
C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;
D.样本容量是1200,故本选项错误.
故选:A.
【点睛】
本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.
4、D
【解析】
【分析】
根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.
【详解】
解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,
那么由中位数的定义可知,这组数据的中位数是.
故选D.
【点睛】
本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
6、B
【解析】
【分析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
解:这批灯泡的平均使用寿命是
=124(h),
故选:B.
【点睛】
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
7、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
8、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
9、A
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.
【详解】
解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;
②7万名考生的数学成绩是总体,故说法错误;
③1000名考生的数学成绩是总体的一个样本,故说法错误;
④每名考生的数学成绩是个体,故说法正确.
综上,正确的是①④,共2个,
故选:A.
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考察的事物.
10、B
【解析】
【分析】
由平均数的公式建立关于x的方程,求解即可.
【详解】
解:由题意得:(85+x+80+90)÷4=85
解得:x=85.
故选:B.
【点睛】
本题考查了平均数,应用了平均数的计算公式建立方程求解.
二、填空题
1、7
【解析】
【分析】
根据数据都加上一个数(或减去一个数)时,平均数加上或减去同一个数,再根据数据都乘以同一个数,平均数乘以这个数,从而得出答案.
【详解】
解:∵数据x1,x2,x3的平均数是3,
∴数据2x1+1,2x2+1,2x3+1的平均数是2×3+1=7.
故答案为:7.
【点睛】
此题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
2、①②##②①
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;
②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;
③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;
④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、4
【解析】
【分析】
首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值.
【详解】
利用十字交乘法将5x2+17x-12因式分解,
可得:5x2+17x-12=(x+4)(5x-3)=(x+a)(bx+c).
∴,
∵的中位数是4
∴a,b,c的中位数是4
故答案为:4.
【点睛】
本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键.
4、5
【解析】
【分析】
根据众数的概念求解.
【详解】
解:这组数据5出现的次数最多.
故众数为5.
故答案为:5,
【点睛】
本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.
5、78
【解析】
【分析】
由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式
,即可得到答案.
【详解】
解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩
∴=78(分).
则该应聘者的总成绩是78分.
故答案为:78
【点睛】
本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.
三、解答题
1、(1)见解析;(2)①乙;②甲;(3)乙
【解析】
【分析】
(1)根据折线统计图的数据,分别求得平均数,中位数,以及合格的次数,再填表即可;
(2)由于甲、乙的平均成绩一致,根据合格次数与中位数的大小比较即可求得答案;
(3)根据折线统计图中甲、乙的趋势和成绩合格的次数分析即可求得.
【详解】
解:(1)根据折线统计图可知甲的成绩分别为,乙的成绩分别为
则甲的平均分为,
将甲的成绩从小到大排列:,
则甲的中位数为,合格次数为2次
乙的平均分为,乙的中位数为,合格次数为4次
填表如下
| 平均数(分) | 中位数(分) | 体能测试成绩合格次数(次) |
甲 | 60 | 65 | 2 |
乙 | 60 | 57.5 | 4 |
(2)依据平均数与成绩合格的次数比较甲和乙,甲、乙的平均成绩一致,乙的合格次数比甲的多,故乙的体能测试成绩较好;
依据平均数与中位数比较甲和乙,甲、乙的平均成绩一致,甲的中位数分数较高,故甲的体能测试成绩较好;
故答案为:乙,甲
(3)从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.
【点睛】
本题考查了折线统计图,求一组数据的平均数,求一组数据的中位数,看懂统计图是解题的关键.
2、见解析
【解析】
【分析】
先连续测量10次“拃长”,将对应的数据记录下来,再根据平均数的公式即可求得这10次“拃长”的平均数,进而可求得课桌的长度,身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.
【详解】
解:连续测量10次“拃长”的数据分别为20.1,20.2,20.1,19.9,20.3,20.3,19.8,19.9,19.7,19.7(单位:cm),
则这10次“拃长”的平均数为(20.1+20.2+20.1+19.9+20.3+20.3+19.8+19.9+19.7+19.7)÷10=20(cm),
用这把“尺子”测量课桌的长度正好需要测量3次,
则课桌的长度为3×20=60(cm),
身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.
【点睛】
本题考查了平均数的计算,熟练掌握平均数计算公式是解决本题的关键.
3、(1)7.5,8.0;(2)该运动员本次试跳得分为84分.
【解析】
【分析】
(1)根据众数(一组数据中心出现次数最多的数据叫做众数)、中位数(一组数据按照从小到大的顺序排列,找出最中间的一个数或最中间两个数的平均数)的定义即可得;
(2)根据运动员试跳得分公式列出算式计算即可.
【详解】
解:(1)7.5出现的次数最多,7名裁判打分的众数是7.5;
将这组数据按照从小到大的顺序排列得:7.5、7.5、7.5、8.0、8.5、8.5、9.0,根据中位数的定义可得,中位数为8.0;
故答案为:7.5,8.0;
(2)根据试跳得分公式可得:
(分),
故该运动员本次试跳得分为84分.
【点睛】
题目主要考查平均数、众数和中位数的定义,理解三个定义及题意中公式是解题关键.
4、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数
【解析】
【分析】
(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.
(2)鞋厂最感兴趣的是使用的人数,即众数.
【详解】
解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
观察图表可知:有7人的鞋号为40,人数最多,即众数是40;
中位数是第10、11人的平均数,(39+39)÷2=39,
故答案为:平均数为39.1码,中位数为39码,众数为40码;
(2)鞋厂最感兴趣的是使用的人数,即众数,
故答案为:鞋厂最感兴趣的是众数.
【点睛】
本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.
5、甲的平均成绩高,见解析
【解析】
【分析】
根据加权平均数的定义列式计算即可求解.
【详解】
解:甲的平均成绩高,
∵甲的平均成绩:(分),
乙的平均成绩:(分),
,
∴甲的平均成绩高.
【点睛】
本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.
相关试卷
这是一份数学第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了下列调查中,最适合采用全面调查,下列调查适合作抽样调查的是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课时训练,共21页。试卷主要包含了下列说法中正确的是,为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题,共17页。试卷主要包含了下列问题不适合用全面调查的是,有一组数据,下列说法中正确的是等内容,欢迎下载使用。