2020-2021学年第九章 数据的收集与表示综合与测试课后复习题
展开这是一份2020-2021学年第九章 数据的收集与表示综合与测试课后复习题,共18页。试卷主要包含了为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某教室9天的最高室温统计如下:
最高室温(℃) | 30 | 31 | 32 | 33 |
天数 | 1 | 2 | 2 | 4 |
这组数据的中位数和众数分别是( )
A.31.5,33 B.32.5,33 C.33,32 D.32,33
2、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检 B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间 D.调查市场上某种食品的色素含量是否符合国家标准
3、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
4、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
5、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
6、下列调查中,最适合采用抽样调查的是( )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
7、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
8、为了解某校初一年级1200名学生每天花费在数学学习上的时间,抽取了100名学生进行调查,以下说法正确的是( )
A.1200名学生每天花费在数学学习上的时间是总体 B.每名学生是个体
C.从中抽取的100名学生是样本 D.样本容量是100名
9、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时 D.众数是8小时
10、在爱心一日捐活动中,我校初三部50名教师参与献爱心,以下是捐款统计表,则该校初三教师捐款金额的中位数,众数分别是( )
金额/元 | 50 | 100 | 150 | 200 | 300 |
人数 | 4 | 18 | 14 | 8 | 6 |
A.100,100 B.100,150 C.150,100 D.150,150
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某次测试中,小颖语文,数学两科分数共计176分,如果再加上英语分数,三科的平均分就比语文和数学的两科平均分多3分,则小颖的英语成绩是______分.
2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.
3、5月1日至7日,某市每日最高气温如图所示,则中位数是 ______.
4、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
5、三种圆规的单价依次是15元、10元、8元,销售量占比分别为20%,50%,30%,则三种圆规的销售均价为__________元.
三、解答题(5小题,每小题10分,共计50分)
1、某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的衬衫.为了调查各种领口大小衬衫的销售情况,商店统计了某天的销售情况,并绘制了右面的扇形统计图,你认为该商店应多进哪种衬衫?
2、2021年央视春晩,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:
(1)求本次接受调查的学生人数.
(2)求扇形统计图中D所在扇形的圆心角度数.
(3)将条形统计图补充完整.
3、在学校内随机调查20位男同学所穿运动鞋的尺码,计算它们的平均数.
4、某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%,20%,40%的比例计入学期总评成绩.小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
5、小明调查了班级中20名同学某月的家庭用电量,结果如图所示.若把每组中各个用电量用这组数据的中间值代替(如30~40kW·h的中间值为35kW·h),则这20名同学家这个月的平均用电量是多少?
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
一共有9个数据,其中位数是第5个数据,
由表可知,这组数据的中位数为32,
这组数据中数据33出现次数最多,
所以这组数据的众数为33,
故选:D.
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.
2、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
3、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
5、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
6、A
【解析】
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、1200名学生每天花费在数学学习上的时间是总体,故此选项符合题意;
B、每名学生每天花费在数学学习上的时间是个体,故此选项不符合题意;
C、从中抽取的100名学生每天花费在数学学习上的时间是样本,故此选项不符合题意;
D、样本容量是100,故此选项不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知定义.
9、D
【解析】
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
10、C
【解析】
【分析】
根据中位数和众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数。把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数,即可求解.
【详解】
解:由表知,这组数据的第25、26个数据分别为150、150,
所以其中位数为=150,众数为100,
故选:C.
【点睛】
本题主要考查众数和中位数,解题的关键是掌握众数与中位数的定义.
二、填空题
1、97
【解析】
【分析】
先求出三科的平均分,根据平均数的含义求出三科的总分,减去语文,数学两科分数即可求解.
【详解】
解:(176÷2+3)×3-176
=(88+3)×3-176
=91×3-176
=273-176
=97(分).
答:小明的外语成绩是97分.
故答案为:97.
【点睛】
本题考查了平均数的含义,本题的难点是求出三科的平均分和三科的总分.
2、 10 9
【解析】
【分析】
先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;
【详解】
解:由题意可把数据按由小到大的顺序排列为6、8、10、10,
所以该组数据的中位数为9,众数为10;
故答案为10,9
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、27℃
【解析】
【分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:把这些数从小到大排列为:23,25,26,27,30,33,33,
∴最中间的数是27,
则中位数是27℃.
故答案为:27℃.
【点睛】
本题主要考查中位数,熟练掌握求一组数据的中位数是解题的关键.
4、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、10.4
【解析】
【分析】
代入加权平均数公式计算即可.
【详解】
,故填10.4.
【点睛】
本题考查了加权平均数,熟悉加权平均数公式是解决本题的关键.
三、解答题
1、应多进领口大小为40cm的衬衫.
【解析】
【分析】
根据题意,找出销售量所占比重最多的对应的尺寸的衬衫即可.
【详解】
解:根据扇形统计图可得:,
答:该商店应多进领口大小为40cm的衬衫.
【点睛】
此题考查的是众数的的意义,理解众数的意义作出相应的决策是解题关键.
2、(1)50人;(2)36°;(3)见解析
【解析】
【分析】
(1)根据B的人数除以所占的百分比得到接受调查的学生人数;
(2)先求出D所占百分比,然后用360°×它所占百分比即可;
(3)先求出C所占百分比,再求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;
【详解】
解:(1)根据题意得:(人)
答:本次接受调查的人数是50人;
(2)D占的百分比,
D所在的扇形圆心角的度数为;
(3)C占的百分比为1-(20%+40%+10%)=30%,
C的人数为50×30%=15(人),即C中男生为15-8=7(人);
A的人数为50×20%=10(人),A中女生人数为10-6=4(人),
补全条形统计图,如图所示:
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3、39.1
【解析】
【分析】
根据加权平均数的定义求解分析.
【详解】
解:在学校内随机调查20位男同学所穿运动鞋的尺码,结果如图所示:
则平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
【点睛】
本题考查加权平均数,加权平均数是指在一组数据中所有数据之和再除以数据的个数,掌握算数平均数是解题关键.
4、88.4分
【解析】
【分析】
小亮这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.
【详解】
解:根据题意,小亮这学期总评成绩为:
(分).
答:小亮这学期总评成绩为88.4分.
【点睛】
本题考查了加权平均数的计算,根据加权平均数的计算公式解答是解题关键.
5、56.5 kW·h
【解析】
【分析】
根据统计图可得出每组对应的数量,然后求出总用电量除以总户数即可.
【详解】
解:
根据图象可得:30~40kW·h有2户;40~50kW·h有3户;50~60kW·h有8户;60~70kW·h有4户;70~80kW·h有3户;
平均用电量是:(kW·h),
答:这20名同学家这个月的平均用电量是56.5 kW·h.
【点睛】
题目主要考查从统计图中分析数据的集中趋势、求平均数,理解题意及运用算数平均数的计算方法是解题关键.
相关试卷
这是一份初中数学第九章 数据的收集与表示综合与测试同步训练题,共20页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。试卷主要包含了下列说法中正确的个数是个.,数据,,,,,的众数是,下列调查中,最适合抽样调查的是,下列说法中等内容,欢迎下载使用。