北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共21页。试卷主要包含了下列调查中,最适合抽样调查的是,下列说法中正确的个数是个.,某教室9天的最高室温统计如下等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.
成绩/分 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
人数 | ■ | ■ | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 12 |
下列关于成的统计量中、与被遮盖的数据无关的是( )
A.平均数 B.中位数
C.中位数、众数 D.平均数、众数
2、下列调查中,最适合采用抽样调查的是( )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
3、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
4、下列调查中,最适合抽样调查的是( )
A.调查某校七年级一班学生的课余体育运动情况 B.调查某班学生早餐是否有喝牛奶的习惯
C.调查某种灯泡的使用寿命 D.调查某校足球队员的身高
5、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )
A.每月阅读数量的平均数是 B.众数是
C.中位数是 D.每月阅读数量超过的有个月
6、2021年正值中国共产党建党100周年,某校开展“敬建党百年,传承红色基因”读书活动.为了了解某班开展的学习党史情况,该校随机抽取了9名学生进行调查,他们读书的本数分别是3、2、3、2、5、1、2、5、4,则这组数据的众数是( )
A.2 B.3 C.3和5 D.5
7、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
8、以下是某校九年级10名同学参加学校演讲比赛的统计表:
成绩(分) | 80 | 85 | 90 | 95 |
人数(人) | 1 | 2 | 5 | 2 |
则这组数据的中位数和众数分别为( )
A.90,89 B.90,90 C.90,90.5 D.9
9、某教室9天的最高室温统计如下:
最高室温(℃) | 30 | 31 | 32 | 33 |
天数 | 1 | 2 | 2 | 4 |
这组数据的中位数和众数分别是( )
A.31.5,33 B.32.5,33 C.33,32 D.32,33
10、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、九(1)班同学为灾区小朋友捐款.全班40%的同学捐了10元,30%的同学捐了5元,20%的同学捐了2元,还有10%的同学因为自身家庭经济原因没捐款.则这次全班平均每位同学捐款____元.
2、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:
分数段(分) | 61-70 | 71-80 | 81-90 | 91-100 |
人数(人) | 丄 | 正上 | 正一 | 止 |
(1)参加这次演讲比赛的同学共有________人;
(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.
3、为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为__.
4、已知一组数据由五个正整数组成,中位数是2,众数是2,且最大的数小于3,则这组数据之和的最小值是____________.
5、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.
三、解答题(5小题,每小题10分,共计50分)
1、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.
(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.
(2)请补充完整折线统计图;
(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.
2、两个人群A,B的年龄(单位;岁)如下:
A:13,13,14,15,15,15,15,16,17,17;
B:3,4,4,5,5,6,6,6,54,57.
(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
3、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.
(1)本次活动共有多少篇论文参加评比?
(2)哪组上交的论文数量最多?是多少?
(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?
4、在学校内随机调查20位男同学所穿运动鞋的尺码,计算它们的平均数.
5、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:
序号 | 1号 | 2号 | 3号 | 4号 | 5号 | 6号 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的众数是________分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.
【详解】
解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),
成绩为100分的,出现次数最多,因此成绩的众数是100,
成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,
因此中位数和众数与被遮盖的数据无关,
故选:C.
【点睛】
本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.
2、A
【解析】
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
4、C
【解析】
【分析】
根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得.
【详解】
解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;
B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;
C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;
D、“调查某校足球队员的身高”适合全面调查,此项不符题意;
故选:C.
【点睛】
本题考查了抽样调查与全面调查,熟记定义是解题关键.
5、D
【解析】
【分析】
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
解:A、每月阅读数量的平均数是,故A错误,不符合题意;
B、出现次数最多的是,众数是,故B错误,不符合题意;
C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;
D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;
故选:D.
【点睛】
本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
6、A
【解析】
【分析】
找到这组数据中出现次数最多的数,即可求解.
【详解】
解:这组数据3,2,3,2,5,1,2,5,4中,出现次数最多的是2分,因此众数是2;
故选:A.
【点睛】
本题考查众数的定义,属于基础题型.
7、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
8、B
【解析】
【分析】
先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.
【详解】
在这一组数据中90是出现次数最多的,故众数是90,
而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,
那么由中位数的定义可知,这组数据的中位数是90.
故选:B.
【点睛】
本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.
9、D
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
一共有9个数据,其中位数是第5个数据,
由表可知,这组数据的中位数为32,
这组数据中数据33出现次数最多,
所以这组数据的众数为33,
故选:D.
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.
10、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
二、填空题
1、5.9
【解析】
【分析】
设总人数为x求平均值即可.
【详解】
设全班人数为x人
则平均每位同学捐款为: (元)
故答案为:5.9
【点睛】
本题考查平均数的知识,熟练掌握求值方法是解题的关键.
2、 20 20%
【解析】
【分析】
(1)观察表格,求各段的人数的和即可;
(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.
【详解】
(1)参加这次演讲比赛的人数:2+8+6+4=20(人);
(2)成绩在91~100分的同学为优胜者,优胜率为:.
故答案为:20,20%.
【点睛】
本题考查了统计表,读懂统计表中的信息是解题的关键.
3、72°
【解析】
【分析】
先算出总人数,再用足球人数占总人数的百分比乘即可得.
【详解】
解:总人数是:20÷40%=50(人),
∵足球的人数为10人,
∴“足球”项目扇形的圆心角的度数为:360°×=72°;
故答案为:72°.
【点睛】
本题考查了扇形统计图,解题的关键的是求出总人数.
4、8
【解析】
【分析】
将这组数据从小到大培训,处于中间位置的那个数是中位数即是2,众数则是数据中出现次数最多的数,根据题意计算即可;
【详解】
根据题意可得这组数据中由两个数为2,前面两个数为小于2的整数,均为1,
又最大的数小于3,
∴最后两个数均为2,
∴可得这组数据和的最小值为;
故答案是8.
【点睛】
本题主要考查了中位数和众数的应用,准确计算是解题的关键.
5、 15
【解析】
【分析】
根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.
【详解】
解:这些队员年龄的平均数=
这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,
∴中位数为15
【点睛】
本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.
三、解答题
1、(1)60%;(2)补全图形见解析;(3)7.
【解析】
【分析】
(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.
(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.
(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.
【详解】
(1)根据统计图可知嘉嘉射箭不低于9环的有3次,
故嘉嘉射箭成绩的优秀率为.
(2)嘉嘉的平均成绩为环
设淇淇最后一次成绩为m,
∴淇淇的平均成绩为
由题意可知,即,
解得:m=8.
故淇淇最后一次成绩为8,
由此,补全折线统计图如下:
(3)淇淇射击5次中8环出现了3次,
∴a=8,
∴嘉嘉六次射箭成绩的中位数是8环,
嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.
∵,
∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.
故b的最大值为7.
【点睛】
本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.
2、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.
【解析】
【分析】
(1)根据平均数、中位数和众数的定义,并且结合题意求解;
(2)根据平均数、中位数和众数的定义,并且结合题意求解.
【详解】
解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),
这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),
15出现了4次,次数最多,所以众数是15岁;
用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;
(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),
这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),
6出现了3次,次数最多,所以众数是6岁;
平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.
【点睛】
本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.
3、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高
【解析】
【分析】
(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;
(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;
(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.
【详解】
解:(1)第二组的频率是=0.15
总篇数是18÷0.15=120(篇),
则本次活动共有120篇论文参加评比.
(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,
则计算可知第四组上交的论文数量最多,有36篇.
(3)第六组的论文的频数=120×0.05=6篇;
第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;
56%<67%,
则第六组的获奖率较高.
【点睛】
本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.
4、39.1
【解析】
【分析】
根据加权平均数的定义求解分析.
【详解】
解:在学校内随机调查20位男同学所穿运动鞋的尺码,结果如图所示:
则平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
【点睛】
本题考查加权平均数,加权平均数是指在一组数据中所有数据之和再除以数据的个数,掌握算数平均数是解题关键.
5、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)4号和2号
【解析】
【分析】
(1)根据众数的定义找出出现的次数最多的数即是众数;
(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
【详解】
(1)84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;
故答案为84;
(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:
,解得:,
笔试成绩和面试成绩各占的百分比是40%,60%;
(3)2号选手的综合成绩是(分),
3号选手的综合成绩是(分),
4号选手的综合成绩是(分),
5号选手的综合成绩是(分),
6号选手的综合成绩是(分),
则综合成绩排序前两名人选是4号和2号
【点睛】
此题考查了加权平均数,用到的知识点是众数、加权平均数的计算公式,关键是灵活运用有关知识列出算式.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题,共18页。试卷主要包含了下列调查中,适合用普查方式的是,水果店内的5个苹果,其质量,一组数据x,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 数据的收集与表示综合与测试课堂检测,共17页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份初中第九章 数据的收集与表示综合与测试当堂检测题,共19页。试卷主要包含了某中学七,下列调查中,最适合采用全面调查,为了解学生参加体育锻炼的情况等内容,欢迎下载使用。