初中数学第九章 数据的收集与表示综合与测试一课一练
展开这是一份初中数学第九章 数据的收集与表示综合与测试一课一练,共20页。试卷主要包含了一组数据中的中位数,水果店内的5个苹果,其质量等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
2、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是元/千克,且这4个单价的中位数与众数相同,则a 的值为( )
A.5 B.4 C.3 D.2
3、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
使用寿命x/h | 80 | 120 | 160 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A. B. C. D.
4、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个 B.2个 C.3个 D.4个
5、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
6、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
7、一组数据中的中位数( )
A.只有1个 B.有2个 C.没有 D.不确定
8、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
9、水果店内的5个苹果,其质量(单位:g)分别是:200,300,200,240,260关于这组数据,下列说法正确的是( )
A.平均数是240 B.中位数是200
C.众数是300 D.以上三个选项均不正确
10、小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )
A.1 B.2 C.0 D.-1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一组数据3,x,4,2的众数和中位数相等,则x的值为________.
2、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
3、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是______(精确到0.1),众数是______,中位数是______.
4、在调查中,考察全体对象的调查叫做________,________是指从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况;要考察的全体对象称为________,其中的每一个考察对象称为________,被抽取的那些考察对象组成一个________,其数目称为________.
5、我区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为95分,面试成绩为85分,那么吴老师的总成绩为__________分.
三、解答题(5小题,每小题10分,共计50分)
1、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.
(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.
(2)请补充完整折线统计图;
(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.
2、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).
成绩(分) | 50 | 60 | 70 | 80 | 90 | 100 |
人数(人) | 2 | 5 | 7 | 3 |
已知该班学生期中考试数学成绩平均分是76分.
(1)求该班80分和90分的人数分别是多少?
(2)设此班30名学生成绩的众数为,中位数为,求的值.
3、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 | 非常不满意 | 不满意 | 有一点满意 | 满意 |
人数 | 200 | 160 | 32 | 8 |
百分比 |
|
|
|
|
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
4、某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.
(1)这10天中,日最高气温的众数是多少?
(2)计算这10天日最高气温的平均值.
5、如今很多人都是“手机不离手.疫情发生以来,有的人手机使用时间比以前更长了,也有人养成了健康有节律的手机使用习惯.近日,中国青年报社对中学生、大学生和上班族进行了一项抽样调查,记者李斌把调查结果绘制成如下统计图:
每天使用手机时长情况统计图(1)
每天使用手机时长情况统计图(2)
(1)结合两个统计图中的数据,可算出接受调查的一共有_____人.
(2)每天使用手机小时以上的占全部受调查人数的_____,是_____人.
(3)的受调查者坦言:最近手机使用时间增长了,主要用手机刷短视频、上网课和沟通工作.由于长时间观看手机屏幕会使眼睛疲劳、干涩,引发视力下降,所以养成健康、自律的手机使用意识和习惯很重要.对此你有什么好的建议?(至少写出两条)
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
【分析】
根据统计图中的数据和题意,可以得到的值,本题得以解决.
【详解】
解:由统计图可知,前3次的中位数是3,
第4次买的西瓜单价是元千克,这四个单价的中位数恰好也是众数,
,
故选:C.
【点睛】
本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.
3、B
【解析】
【分析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
解:这批灯泡的平均使用寿命是
=124(h),
故选:B.
【点睛】
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
4、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
5、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
6、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
7、A
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:一组数据中的中位数只有一个;
故选A.
【点睛】
本题主要考查中位数,熟练掌握中位数的求法是解题的关键.
8、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
9、A
【解析】
【分析】
根据平均数、中位数和众数的定义分别对每一项进行分析,即可得出答案.
【详解】
A、平均数是:×(200+300+200+240+260)=240(g),故本选项正确,符合题意;
B、把这些数从小到大排列为:200,200,240,260,300,中位数是240g,故本选项错误,不符合题意;
C、众数是200g,故本选项错误,不符合题意;
D、以上三个选项A选项正确,故本选项错误,不符合题意;
故选:A.
【点睛】
此题考查了平均数、中位数和众数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
10、C
【解析】
【分析】
利用平均数公式计算即可.
【详解】
解:这五天的最低温度的平均值是.
故选:C.
【点睛】
此题考查平均数公式,熟记公式是解题的关键.
二、填空题
1、
【解析】
【分析】
由一组数据3,x,4,2有众数,可得或 或 再分类讨论即可得到答案.
【详解】
解: 一组数据3,x,4,2有众数,
或 或
当时,则数据为:
此时中位数为 众数为2,不合题意,舍去,
当时,则数据为:
此时中位数为 众数为3,符合题意,
当时,则数据为:
此时中位数为 众数为4,不符合题意,舍去,
综上:
故答案为:
【点睛】
本题考查的是中位数与众数的含义,有清晰的分类讨论思想是解题的关键.
2、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、 73.0 80,90 80
【解析】
【分析】
根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.
【详解】
解:(1)平均数是:
=73.0;
(2)90分的有11人,80分的有11人,出现的次数最多,则众数是 80和90,
(3)把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;
故答案为;73.0;80和90;80.
【点睛】
此题考查了平均数、众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),出现次数最多的数是众数.
4、 全面调查 抽样调查 总体 个体 样本 样本容量
【解析】
【分析】
依据全面调查,抽样调查,总体,个体,样本,样本容量的定义直接解答即可
【详解】
解:在调查中,考察全体对象的调查叫做全面调查,从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查叫抽样调查,要考察的全体对象称为总体,其中的每一个考察对象称为个体,被抽取的那些考察对象组成一个样本,其数目称为样本容量;
故答案为:全面调查,抽样调查,总体,个体,样本,样本容量;
【点睛】
本题主要考查了全面调查,抽样调查及相关概念,熟练掌握有关概念是解答本题的关键.
5、91
【解析】
【分析】
根据笔试和面试所占的百分比以及吴老师的笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
解:吴老师的总成绩为95×60%+85×40%=57+34=91(分).
故答案是91.
【点睛】
本题主要题考查了加权平均数,根据加权平均数的计算公式列出算式是解答本题的关键.
三、解答题
1、(1)60%;(2)补全图形见解析;(3)7.
【解析】
【分析】
(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.
(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.
(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.
【详解】
(1)根据统计图可知嘉嘉射箭不低于9环的有3次,
故嘉嘉射箭成绩的优秀率为.
(2)嘉嘉的平均成绩为环
设淇淇最后一次成绩为m,
∴淇淇的平均成绩为
由题意可知,即,
解得:m=8.
故淇淇最后一次成绩为8,
由此,补全折线统计图如下:
(3)淇淇射击5次中8环出现了3次,
∴a=8,
∴嘉嘉六次射箭成绩的中位数是8环,
嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.
∵,
∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.
故b的最大值为7.
【点睛】
本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.
2、(1)该班得80分的有8人,得90分的有5人.(2)160.
【解析】
【分析】
(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y+2+5+7+3=30;解方程组即可.
(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.
【详解】
解:(1)设该班得80分的有人,得90分的有人.
根据题意和平均数的定义,得
,
整理得,解得.
即该班得80分的有8人,得90分的有5人.
(2)因为80分出现8次且出现次数最多.所以,第15、16两个数均为80分,所以,则.
【点睛】
本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系.
3、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【解析】
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
4、(1)35℃;(2)34.3℃
【解析】
【分析】
(1)根据所占比例最大即可确定众数;
(2)先求出各温度占总天数的百分比的和,再除以即可.
【详解】
解:(1)根据扇形统计图,35℃占的比例最大,因此日平均气温的众数是35℃;
(2)这10天日最高气温的平均值是:
(℃).
【点睛】
本题考查的是扇形统计图、求众数、平均数,解题的关键是能从扇形统计图中获取信息.
5、1)2000人;(2)45,900人.(3)①尽量少使用手机;②控制手机使用的时长等.
【解析】
【分析】
(1)根据样本容量=频数÷所占百分比计算即可.
(2)根据各频数之和等于样本容量,计算出人数,根据频数÷样本容量=百分比计算即可.
(3)答案不唯一,只要合理即可.
【详解】
(1)样本容量=700÷35=2000(人).
(2)每天使用手机小时以上的人数为:2000-40-360-700=900,
占全部受调查人数的百分比为:900÷2000=45,
故答案为:45,900.
(3)①尽量少使用手机;②控制手机使用的时长等.
【点睛】
本题考查了样本容量,扇形统计图,条形统计图,熟练掌握统计图的意义是解题的关键.
相关试卷
这是一份2021学年第九章 数据的收集与表示综合与测试课后练习题,共17页。
这是一份2020-2021学年第九章 数据的收集与表示综合与测试一课一练,共18页。试卷主要包含了有一组数据等内容,欢迎下载使用。
这是一份初中第九章 数据的收集与表示综合与测试练习,共18页。试卷主要包含了已知一组数据等内容,欢迎下载使用。