初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试精练
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共19页。试卷主要包含了山西被誉为“表里山河”,意思是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
2、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
3、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
使用寿命x/h | 80 | 120 | 160 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A. B. C. D.
4、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )
城市 | 太原 | 大同 | 阳泉 | 长治 | 晋城 | 临汾 | 运城 | 吕梁 | 晋中 | 忻州 | 朔州 |
最高峰高度(米) | 2789 | 2420 | 1874 | 2523 | 2358 | 2504.3 | 2358 | 2831 | 2566.6 | 3061.1 | 2333 |
A.2420米 B.2333米 C.2504.3米 D.2566.6米
5、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )
排名 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
代表团 | 山东 | 广东 | 浙江 | 江苏 | 上海 | 湖北 | 福建 | 湖南 | 四川 | 辽宁 |
金牌数 |
A.36 B.27
C.35.5 D.31.5
6、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
7、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( )
A.90 B.90.3 C.91 D.92
8、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )
A.96.00,95.70 B.96.00,96.00
C.96.00,82.50 D.95.70,96.00
9、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
10、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 | 测试成绩 | |
甲 | 乙 | |
面试 | 90 | 95 |
综合知识测试 | 85 | 80 |
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
2、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____
3、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.
4、某招聘考试分笔试和面试两项,笔试成绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是______分.
5、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并把测试得分按1:4:5比例确定测试总分,已知某候选人三项得分分别为80,70,60,则这位候选人的招聘得分为________.
三、解答题(5小题,每小题10分,共计50分)
1、随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9
(1)这组数据的中位数是____,众数是____;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有2000位居民,试估计该小区居民一周内使用共享单车的总次数.
2、14,5,10,3,6的中位数是什么?
3、某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下:
| 平均数(分) | 中位数(分) | 众数(分) |
1班 | 87.5 | 90 | ③ |
2班 | ① | ② | 100 |
(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为 ;
(2)请你将表格补充完整;
(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.
4、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
5、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)直接在图①中补全条形统计图;
(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);
(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
2、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
【分析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
解:这批灯泡的平均使用寿命是
=124(h),
故选:B.
【点睛】
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
4、C
【解析】
【分析】
根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).
【详解】
把这11个数从小到大排列为:
1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,
共有11个数,
中位数是第6个数2504.3,
故选:C.
【点睛】
此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.
5、D
【解析】
【分析】
根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.
【详解】
解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,
那么由中位数的定义可知,这组数据的中位数是.
故选D.
【点睛】
本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
7、D
【解析】
【分析】
根据加权平均数计算.
【详解】
解:小明的平均成绩为分,
故选:D.
【点睛】
此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.
8、B
【解析】
【分析】
众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.
【详解】
解:在这一组数据中96.00是出现次数最多的,故众数是96.00;
将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.
故选:B.
【点睛】
本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.
9、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
2、a>1.5b
【解析】
【分析】
先表示甲乙的加权平均分,再根据甲被录取列不等式即可.
【详解】
甲的加权平均分为:90a+80b
乙的加权平均分为:84a+89b
∵甲被录取
∴甲的分数>乙的分数
∴90a+80b>84a+89b,
解得a>1.5b,
故答案为:a>1.5b.
【点睛】
本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.
3、7
【解析】
【分析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10
中位数:(6+8)÷2=7
故答案为:7.
【点睛】
本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.
4、87
【解析】
【分析】
按照加权平均数的计算公式计算即可.
【详解】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
解:小明的平均成绩是:=87(分).
故答案为:87.
【点睛】
本题考查了加权平均数的应用,掌握加权平均数的意义及计算是关键.
5、66
【解析】
【分析】
根据加权平均数的公式计算即可,加权平均数计算公式为:,其中代表各数据的权.
【详解】
故答案为:
【点睛】
本题考查了加权平均数,牢记加权平均数的公式是解题的关键.
三、解答题
1、(1)16;17;(2)14次;(3)28000次
【解析】
【分析】
(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【详解】
解:(1)按照从小到大的顺序新排列后,第5、第6个数分别是15和17,
所以中位数是(15+17)÷2=16,
因为17出现了3次,出现的次数最多,
所以众数是17,
故答案是16,17;
(2)根据题意得:
×(0+7+9+12+15+17×3+20+26)=14(次),
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)根据题意得:
2000×14=28000(次)
答:该小区居民一周内使用共享单车的总次数为28000次.
【点睛】
本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
2、6
【解析】
【分析】
把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.
【详解】
解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,
答:14,5,10,3,6的中位数是6.
【点睛】
本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3、(1)17人;(2)①88;②85;③90;(2)答案不唯一,见解析
【解析】
【分析】
(1)根据(1)班求得参加竞赛的人数,再根据(2)班成绩在C级以上的比重求解即可;
(2)根据众数、中位数以及平均数的方法,求解即可;
(3)从平均数、众数以及中位数等方面对两个班进行评价即可.
【详解】
解:(1)参加竞赛的人数有:(人)
初三(2)班成绩在C级以上所占的比重为
则人数有(人)
故答案为17人
(2)根据题意可得:(2)班的平均成绩为
70分的人数有人
80分的人数有人
90分的人数有人
参加竞赛的人数为人,从小到大取第10、11位的成绩,其平均数为
∴(2)班的中位数为
观察统计图可以得出,(1)班的80分的人数有9人,最多,∴众数为90
故答案为①88;②85;③90;
(3)角度1:因为(2)班成绩的平均数、众数比(1)班高,
所以(2)班的成绩比(1)班好
角度2:因为(1)班成绩的中位数比(2)班高,所以(1)班的成绩比(2)班好
【点睛】
此题考查了统计的综合应用,涉及了统计量的计算以及统计量的意义,解题的关键是从统计图中获取到相关的量.
4、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
5、(1)见解析;(2)36;(3)450
【解析】
【分析】
(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;
(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;
(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.
【详解】
(1)调查的总人数是80÷40%=200(人),
参加艺术社团的人数是200×20%=40(人),
参加其它社团的人数200−80−40−60=20(人),
∴补全条形统计图如下:
(2)它类课程在扇形统计图中所占圆心角的度数是,
故答案为:36;
(3)(人),
∴估计该校喜欢文学类课程的学生450人.
【点睛】
此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.
相关试卷
这是一份初中第九章 数据的收集与表示综合与测试课时训练,共18页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步训练题,共18页。试卷主要包含了下列问题不适合用全面调查的是,下列调查适合作抽样调查的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共19页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。