初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共18页。试卷主要包含了某教室9天的最高室温统计如下等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A.最高分 B.中位数 C.极差 D.平均分2、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )姓名平时期中期末总评小明909085 A.86分 B.87分 C.88分 D.89分3、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )A.2000名学生的数学成绩 B.2000C.被抽取的50名学生的数学成绩 D.504、下列调查中最适合采用全面调查的是( )A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”5、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( )A.0种 B.1种 C.2种 D.3种6、某教室9天的最高室温统计如下:最高室温(℃)30313233天数1224这组数据的中位数和众数分别是( )A.31.5,33 B.32.5,33 C.33,32 D.32,337、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )A.8 B.13 C.14 D.158、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )排名12345678910代表团山东广东浙江江苏上海湖北福建湖南四川辽宁金牌数A.36 B.27C.35.5 D.31.59、已知一组数据85,80,x,90的平均数是85,那么x等于( )A.80 B.85 C.90 D.9510、下列调查适合作抽样调查的是( )A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:测试项目笔试面试测试成绩(分)8090将笔试成绩,面试成绩按的比例计入总成绩,则该应聘者的总成绩是______分.2、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.5、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.三、解答题(5小题,每小题10分,共计50分)1、智能手机等高科技产品正越来越严重地伤害青少年的眼睛,保护视力,刻不容缓.某中学为了解学生的视力状况,培养学生保护视力的意识,对八年级部分学生做了一次主题为“保护视力永康降度”的调查活动,根据近视程度的不同将学生分为A、B、C、D、E五类,其中A表示视力良好、B表示轻度近视(300度以下)、C表示中度近视(300度~600度)、D表示高度近视(600度~900度)、E表示超高度近视(900度以上).学校根据调查情况进行了统计,并绘制了如下两幅不完整的统计图:请你结合图中信息,解答下列问题:(1)参与本次调查活动的学生有 人,(2)求出C与E的人数,并补全条形统计图;(3)求出超高度近视在扇形图中所对应的圆心角的度数.2、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).(1)其中偏差最大的乒乓球直径是 mm;(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .3、下面是我国近几届奥运会所获金牌数,请指出其中的中位数.第25届第26届第27届第28届第29届16枚16枚28枚32枚51枚 4、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试.他们的各项成绩(百分制)如下:应试者听说读写甲85837875乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?5、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?是多少?(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高? ---------参考答案-----------一、单选题1、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.2、B【解析】【分析】根据加权平均数的公式计算即可.【详解】解:小明该学期的总评得分=分.故选项B.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.3、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】解:A、2000名学生的数学成绩是总体,故选项不合题意;B、2000是个体的数量,故选项不合题意;C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;D、50是样本容量,故选项不合题意;故选C【点睛】本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.4、D【解析】【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【详解】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.故选:C【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.6、D【解析】【分析】根据众数和中位数的定义求解即可.【详解】一共有9个数据,其中位数是第5个数据,由表可知,这组数据的中位数为32,这组数据中数据33出现次数最多,所以这组数据的众数为33,故选:D.【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.7、C【解析】【分析】根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.【详解】解:由条形统计图知14岁出现的次数最多,所以这些队员年龄的众数为14岁,故选C.【点睛】本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.8、D【解析】【分析】根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.【详解】解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,那么由中位数的定义可知,这组数据的中位数是.故选D.【点睛】本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9、B【解析】【分析】由平均数的公式建立关于x的方程,求解即可.【详解】解:由题意得:(85+x+80+90)÷4=85解得:x=85.故选:B.【点睛】本题考查了平均数,应用了平均数的计算公式建立方程求解.10、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、【解析】【分析】根据求加权平均数的方法求解即可【详解】解:故答案为:【点睛】本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.2、5.25【解析】【分析】根据加权平均数的计算公式,列出算式,计算即可求解.【详解】解:∵数据:6,4,10的权数分别是2,5,1,∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.故答案为5.25.【点睛】本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.3、88.8【解析】【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.【点睛】本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、22.2【解析】【分析】由中位数的定义“将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据”即可判断出x的值,再利用求平均数的公式求出结果即可.【详解】∵这组数据由5个数组成,为奇数个,且中位数为23,∴,∴这组数据为25,29,20,23,14,∴这组数据的平均数. 故答案为:22.2.【点睛】本题考查中位数,求平均数.掌握中位数的定义和求平均数公式是解答本题的关键.5、 折线 扇形【解析】【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.三、解答题1、(1)600;(2)150,12,补全条形统计图见解析;(3)【解析】【分析】(1)根据条形统计图和扇形统计图由B类别的人数和所占比即可求出总人数;(2)用总人数乘以C类别的所占比即可得出C类别的人数,用总人数减去A、B、C、D的人数即可得出E类别人数,补全条形统计图即可;(3)求出E类别的所占比,再乘以即可得出答案.【详解】(1)由题可知:参与本次调查活动的学生有(人),故答案为:600;(2)C类别的人数为(人),E类别的人数为(人),补全条形统计图如下:(3)超高度近视在扇形图中所对应的圆心角的度数为.【点睛】本题考查统计知识,根据条形统计图与扇形统计图所给出的条件求解是解题的关键.2、(1);(2);(3),【解析】【分析】(1)根据题意列式计算即可;(2)根据平均数的定义即可得到结论;(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.【详解】解:(1)其中偏差最大的乒乓球的直径是故答案为(2)这10乒乓球平均每个球的直径是故答案为(3)这些球的合格率是良好率为故答案为,【点睛】此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.3、28【解析】【分析】根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.【详解】解:由图表可得:我国近几届奥运会所获金牌数的中位数为28.【点睛】本题主要考查中位数,熟练掌握求一组数据的中位数的定义是解题的关键.4、(1)从成绩看,应该录取甲;(2)从成绩看,应该录取乙.【解析】【分析】利用加权平均数的计算公式计算即可.【详解】解:(1)听、说、读、写的成绩按的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然乙的成绩比甲高,所以从成绩看,应该录取乙.【点睛】本题考查了加权平均数的应用,熟练掌握加权平均数的计算公式是解题的关键.5、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高【解析】【分析】(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.【详解】解:(1)第二组的频率是=0.15总篇数是18÷0.15=120(篇),则本次活动共有120篇论文参加评比. (2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,则计算可知第四组上交的论文数量最多,有36篇. (3)第六组的论文的频数=120×0.05=6篇;第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;56%<67%,则第六组的获奖率较高. 【点睛】本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.
相关试卷
这是一份2020-2021学年第九章 数据的收集与表示综合与测试一课一练,共19页。试卷主要包含了下列调查中,最适合抽样调查的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共15页。试卷主要包含了下列调查中,适合用普查方式的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试一课一练,共19页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。