北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共21页。试卷主要包含了已知一组数据,下列说法中,下列说法中正确的个数是个.等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( )
A.0种 B.1种 C.2种 D.3种
2、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查
3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个 B.2个 C.3个 D.4个
4、已知一组数据:66,66,62,68,63,这组数据的平均数和中位数分别是( )
A.66,62 B.65,66 C.65,62 D.66,66
5、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
6、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
7、下列调查中,最适合采用全面调查的是( )
A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高
C.检测一批手持测温仪的使用寿命 D.端午节期间市场上粽子质量
8、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )
A.96.00,95.70 B.96.00,96.00
C.96.00,82.50 D.95.70,96.00
9、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )
A.最高分 B.中位数 C.极差 D.平均分
10、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.
2、某校名学生参加了“爱我中华”作文竞赛.为了解这次作文竞赛的基本情况,
从中随机抽取部分作文成绩汇总制成直方图(如右图),其中分数段与等第的关系如下表:(每组可含最低值,不含最高值)
分数 | 分以下 | ||||
等第 |
(1)抽取的作文数量为________篇;
(2)抽取的作文中,分及分以上的作文数量所占的百分比是________;
(3)根据抽样情况估计,这次作文竞赛成绩的中位数落在等第________组中;
(4)估计参加作文竞赛的名学生的作文成绩为等的人数约为________名.
3、下列调查中,样本具有代表性的有________.
①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查;
②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生;
③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查;
④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数.
4、某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分、80分、90分,如果将这三项成绩按照5:3:2计入总成绩,则他的总成绩为 _____分.
5、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:
测试项目 | 笔试 | 面试 |
测试成绩(分) | 80 | 90 |
将笔试成绩,面试成绩按的比例计入总成绩,则该应聘者的总成绩是______分.
三、解答题(5小题,每小题10分,共计50分)
1、某校春季运动会计划从七年级三个班中评选一个精神文明队,评比内容包括:“开幕式得分”,“纪律卫生”和“投稿及播稿情况”三项(得分均为整数分),三个班的各项得分(不完整)如图所示.
(1)“开幕式”三个班得分的中位数是 ;“纪律卫生”三个班得分的众数是 ;
(2)根据大会组委会的规定:“开幕式”,“纪律卫生”,“投稿及播稿情况”三项按4:4:2的比例确定总成绩,总成绩高的当选精神文明队,已知七年级一班的总成绩为79分.
①请计算七年级二班的总成绩;
②若七年级三班当选精神文明队,请求出七年级三班在“投稿及播稿情况”方面的最少得分?
2、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购买10元以上的商品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品.下表所示的是活动进行中的一组数据:
转动转盘的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“牙膏”区域的次数 | 68 | 111 | 136 | 345 | 564 | 701 |
落在“牙膏”区域的频率 | 0.68 | 0.74 | 0.68 | 0.69 | 0.705 | 0.701 |
(1)请估计当m很大时,落在“牙膏”区域的频率将会接近多少?(精确到0.1)
(2)假如你去转动转盘一次,你获得洗衣液的概率大约是多少?(精确到0.1)
(3)在该转盘中,标有“牙膏”区域的扇形圆心角大约是多少度?(精确到1)
3、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
平均每天锻炼时间 | 人数 | 占被调查数的百分比 | ||
男 | 女 | 合计 | ||
1h以内(含1h) | 43 | 83 | 126 | 42% |
1-2h(含2h) | 20 | 28 | 48 | 16% |
2h以上 | 7 | 5 | 12 | 4% |
不参加锻炼 | 77 | 37 | 114 | 38% |
合计 | 147 | 153 | 300 | 100% |
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
4、为了响应“全民全运,同心同行”的号召,某学校要求学生积极加强体育锻炼,坚持做跳绳运动,跳绳可以让全身肌肉匀称有力,同时会让呼吸系统、心脏、心血管系统得到充分锻炼,学校为了了解学生的跳绳情况,在九年级随机抽取了10名男生和10名女生,测试了这些学生一分钟跳绳的个数,测试结果统计如下:请你根据统计图提供的信息,回答下列问题:
(1)所测学生一分钟跳绳个数的众数是_____________,中位数是_______________;
(2)求这20名学生一分钟跳绳个数的平均数;
5、某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:
信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).
信息二:第三组的成绩(单位:分)为:
76 76 76 73 72 75 74 71 73 74 78 76
根据信息解答下列问题:
(1)补全第二组频数分布直方图(直接在图中补全);
(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;
(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.
【详解】
解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.
故选:C
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.
2、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
4、B
【解析】
【分析】
根据平均数的计算公式(,其中是平均数,是这组数据,是数据的个数)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.
【详解】
解:这组数据的平均数是,
将这组数据按从小到大进行排序为,
则这组数据的中位数是66,
故选:B.
【点睛】
本题考查了平均数和中位数,熟记公式和定义是解题关键.
5、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
6、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
7、A
【解析】
【分析】
根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.
【详解】
解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;
B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;
C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;
D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、B
【解析】
【分析】
众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.
【详解】
解:在这一组数据中96.00是出现次数最多的,故众数是96.00;
将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.
故选:B.
【点睛】
本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.
9、B
【解析】
【分析】
由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.
【详解】
解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选:B.
【点睛】
本题考查了中位数意义,解题的关键是正确掌握中位数的意义.
10、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、 折线 扇形
【解析】
【分析】
根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.
【详解】
解:根据统计图的特点可知:
要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;
了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.
故答案为:折线,扇形.
【点睛】
此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.
2、 64 C 80
【解析】
【分析】
(1)根据直方图将所有小组的频数相加即可求得抽查的人数;
(2)用80及80分以上的人数除以总人数即可求得结果;
(3)根据总人数结合每一小组的人数确定中位数的位置即可;
(4)用总人数乘以A等所占的百分比即可.
【详解】
解:(1)抽取的作文数量为:;
故答案为:64;
(2);
故答案为:;
(3)∵共本,
∴中位数应是第和人的平均数;
∵和人均落在组,
∴中位数落在组;
故答案为:C;
(4)(名).
故答案为:80.
【点睛】
本题考查了频数分布直方图及用样本估计总体、中位数的知识,解决此类题目的关键是结合统计图或直方图并从中进一步整理出进一-步解题的有关信息.
3、②③
【解析】
【分析】
根据抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,判断即可.
【详解】
①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查,七(1)班不一定具有代表性,不符合题意;
②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生,具有代表性,符合题意;
③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查,具有代表性,符合题意;
④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数,星期天抽查不具有代表性,不符合题意.
故答案为:②③.
【点睛】
本题考查在作调查时收集数据的代表性问题,掌握抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,这是解题关键.
4、77
【解析】
【分析】
利用加权平均数的计算方法进行计算即可得出答案.
【详解】
解:他的总成绩为是=77(分),
故答案为:77.
【点睛】
此题考查了加权平均数的意义和计算方法,掌握计算方法是正确解答的关键.
5、
【解析】
【分析】
根据求加权平均数的方法求解即可
【详解】
解:
故答案为:
【点睛】
本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.
三、解答题
1、(1)85;85;(2)①七年级二班的总成绩为80;②七年级三班在“投稿及播稿情况”方面的最少得分是51分.
【解析】
【分析】
(1)将三个班“开幕式”和“纪律卫生”列出来,从中找出中位数和众数即可;
(2)①利用加权平均数计算出七年级三班的得分即可;
②设七年级三班“投稿及播稿情况”的得分为x,因为三班的成绩要比二班的高,根据加权平均数计算与二班的成绩列出不等式求解即可.
【详解】
(1)“开幕式”三个班得分分别为:85,75,90,
故中位数为85;
“纪律卫生”三个班得分分别为:70,85,85,
故众数为85;
(2)①(分),
故七年级二班的总成绩为:80分;
②设七年级三班在“投稿及播稿情况”方面的得分为x分,
若七年级三班当选精神文明对,则七年级三班的总成绩应比七年级二班精神文明成绩要高,
则,
解得,
∵x为整数,
∴x最低为51,
∴七年级三班在“投稿及播稿情况”方面的最少得分为51分.
【点睛】
本题考查了中位数、众数和加权平均数的计算,解题的关键是对定义的理解.
2、(1)0.7;(2)0.3;(3)252°.
【解析】
【分析】
(1)根据频率的定义,可得当m很大时,频率将会接近其概率;
(2)根据概率的求法计算即可;
(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.
【详解】
解:(1)当m很大时,频率将会接近0.7;
(2)获得洗衣液的概率大约是1-0.70=0.3;
(3)扇形的圆心角约是0.7×360°=252°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:频率=所求情况数与总情况数之比.
3、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析
【解析】
【分析】
(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;
(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;
(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;
(4)可以根据抽样调查中样本的代表性进行解答.
【详解】
解: (1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的.
(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.
(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.
(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.
【点睛】
本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.
4、(1)160个,160个(2)155个
【解析】
【分析】
(1)根据众数和中位数的定义求出即可;
(2)根据加权平均数公式求出答案即可.
【详解】
解:(1)由统计图可知:跳绳个数100个的有1人,跳绳个数120个的有1人,跳绳个数140个的有6人,跳绳个数160个的有8人,跳绳个数180个的有2人,跳绳个数200个的有2人,
所以众数为160个,中位数是(160+160)÷2=160(个),
故答案为:160个,160个;
(2)这20名学生一分钟跳绳个数的平均数是=155(个),
答:这20名学生一分钟跳绳个数的平均数是155个.
【点睛】
本题考查了众数、中位数、平均数等知识点,能熟记众数和中位数的定义和加权平均数的公式是解此题的关键.
5、(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人.
【解析】
【分析】
(1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;
(2)根据众数和中位数的定义求解即可;
(3)样本估计总体,样本中不低于80分的占 ,进而估计1500名学生中不低于80分的人数.
【详解】
(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如下:
(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,
将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为 =77(分),因此中位数是77分,
故答案为:76,77;
(3)2000×=960(人),
答:该校2000名学生中成绩不低于80分的大约960人.
【点睛】
本题考查了条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试达标测试,共18页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共19页。试卷主要包含了下列调查中,最适合采用全面调查,数据,,,,,的众数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂检测题,共19页。试卷主要包含了下列说法中等内容,欢迎下载使用。