北京课改版七年级下册第九章 数据的收集与表示综合与测试综合训练题
展开
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试综合训练题,共19页。试卷主要包含了一组数据中的中位数等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查中,调查方式选择合理的是 ( )A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式2、下列调查中最适合采用全面调查的是( )A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”3、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )A.2000名学生的数学成绩 B.2000C.被抽取的50名学生的数学成绩 D.504、一组数据中的中位数( )A.只有1个 B.有2个 C.没有 D.不确定5、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )A.平均数 B.众数 C.中位数 D.最高分与最低分的差6、以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩(分)80859095人数(人)1252则这组数据的中位数和众数分别为( )A.90,89 B.90,90 C.90,90.5 D.97、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):码号3334353637人数761511则鞋厂最感兴趣的是这组数据的( )A.平均数 B.中位数 C.众数 D.方差8、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )A.96.00,95.70 B.96.00,96.00C.96.00,82.50 D.95.70,96.009、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是( )A.5 B.4.5 C.25 D.2410、下列调查活动中最适合用全面调查的是( )A.调查某批次汽车的抗撞击能力 B.调查你所在班级学生的身高情况C.调查全国中学生的视力情况 D.对端午节市场粽子质量进行调查第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计, 绘制了一个不完整的扇形统计图,根据图中提供的信息,阅读3小时对应扇形图的圆心角的大小为_________度.2、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:测试项目测试成绩甲乙面试9095综合知识测试8580根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.3、某单位要招聘1名英语翻译,小亮参加招聘考试的各门成绩如表所示:项目听说读写成绩(分)70908585若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则小亮的平均成绩为_____.4、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A、实验技能操作B,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A:90分;实验技能操作B:75分;则该同学的最终成绩是______分.5、某项比赛对专业和才艺两方面评分的权重分别设为80%和20%.A同学专业得分为90分,才艺得分为80分,A同学的平均分是 _____分.三、解答题(5小题,每小题10分,共计50分)1、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试.他们的各项成绩(百分制)如下:应试者听说读写甲85837875乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?2、一个中学礼仪队的20名女队员的身高(单位:cm)如图所示,你能大致估计出队员的平均身高吗?能用一种简便的方法计算这些队员的平均身高吗?3、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.4、如今很多人都是“手机不离手.疫情发生以来,有的人手机使用时间比以前更长了,也有人养成了健康有节律的手机使用习惯.近日,中国青年报社对中学生、大学生和上班族进行了一项抽样调查,记者李斌把调查结果绘制成如下统计图:每天使用手机时长情况统计图(1)每天使用手机时长情况统计图(2)(1)结合两个统计图中的数据,可算出接受调查的一共有_____人.(2)每天使用手机小时以上的占全部受调查人数的_____,是_____人.(3)的受调查者坦言:最近手机使用时间增长了,主要用手机刷短视频、上网课和沟通工作.由于长时间观看手机屏幕会使眼睛疲劳、干涩,引发视力下降,所以养成健康、自律的手机使用意识和习惯很重要.对此你有什么好的建议?(至少写出两条)5、深圳某中学全校学生参加了“庆祝中国共产党成立100周年”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:70分以下(不包括;;;,并绘制出不完整的统计图.(1)被抽取的学生成绩在组的有______人,请补全条形统计图;(2)被抽取的学生成绩在组的对应扇形圆心角的度数是______;(3)若该中学全校共有2400人,则成绩在组的大约有多少人? ---------参考答案-----------一、单选题1、A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】解:A、2000名学生的数学成绩是总体,故选项不合题意;B、2000是个体的数量,故选项不合题意;C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;D、50是样本容量,故选项不合题意;故选C【点睛】本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.4、A【解析】【分析】根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.【详解】解:一组数据中的中位数只有一个;故选A.【点睛】本题主要考查中位数,熟练掌握中位数的求法是解题的关键.5、C【解析】【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6、B【解析】【分析】先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.【详解】在这一组数据中90是出现次数最多的,故众数是90,而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,那么由中位数的定义可知,这组数据的中位数是90.故选:B.【点睛】本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.7、C【解析】【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【详解】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故选:C.【点睛】本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.8、B【解析】【分析】众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.【详解】解:在这一组数据中96.00是出现次数最多的,故众数是96.00;将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.故选:B.【点睛】本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.9、C【解析】【分析】根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.【详解】解:由题意可知:25出现了5次,出现次数最多,所以众数为25.故选:C.【点睛】本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.10、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合用抽样调查,故此选项错误;B、调查你所在班级学生的身高情况,适合用全面调查,故此选项正确;C、调查全国中学生的视力情况,适合用抽样调查,故此选项错误;D、对端午节市场粽子质量进行调查,适合用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、144【解析】【分析】首先计算出阅读3小时所占圆心角的度数,再乘以360°即可得出结论.【详解】解:阅读3小时所占圆心角的度数为1-16%-10%-10%-24%=40%,360°×40%=144°,故答案为:144.【点睛】本题考查了扇形统计图,正确的识别图形是解题的关键.2、乙【解析】【分析】分别求出两人的成绩的加权平均数,即可求解.【详解】解:甲候选人的最终成绩为: ,乙候选人的最终成绩为: ,∵ ,∴乙将被录取.故答案为:乙【点睛】本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.3、82【解析】【分析】根据加权平均数的计算公式进行计算即可.【详解】解:小亮的平均成绩为:(70×3+90×3+85×2+85×2)÷(3+3+2+2)=(210+270+170+170)÷10=820÷10=82(分).故小亮的平均成绩为82分.故答案为:82.【点睛】本题考查了加权平均数,理解加权平均数的计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.4、81.5【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:该同学的最终成绩是:(分).故答案为:81.5.【点睛】此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.5、88【解析】【分析】把每个分数与其权重相乘再相加即可得到加权平均数.【详解】解:根据题意得:90×80%+80×20%=88(分),答:A同学的平均分是88分.故答案为:88.【点睛】本题考查加权平均数的求法,掌握计算方法是本题关键.三、解答题1、(1)从成绩看,应该录取甲;(2)从成绩看,应该录取乙.【解析】【分析】利用加权平均数的计算公式计算即可.【详解】解:(1)听、说、读、写的成绩按的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然乙的成绩比甲高,所以从成绩看,应该录取乙.【点睛】本题考查了加权平均数的应用,熟练掌握加权平均数的计算公式是解题的关键.2、170cm,见解析【解析】【分析】根据图中点的大致分布发现在170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同即可大致估计出队员的平均身高;将图中数据汇总至表格中,再根据求平均数的方法求解即可.【详解】解:队员的平均身高大致为170cm,因为170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同;根据统计图得到20名女队员的身高为:身高/cm165167168169170171172173174人数122253221 故队员的平均身高为:cm.【点睛】本题考查了平均数的求法,解题的关键是能从图中获取相应的数据,再进行求解.3、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份【解析】【分析】(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;(2)由(1)的结果绘制扇形统计图;(3)用100分别乘以三种报纸所占的百分比即可求得结果.【详解】解:(1),.∴ 该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.(2)A、B、C三种报纸销售量的扇形统计图如图所示. (3)100×20%=20(份),100×50%=50(份),100×30%=30(份).∴ 小明应购进A种报纸20份,B种报纸50份,C种报纸30份.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4、1)2000人;(2)45,900人.(3)①尽量少使用手机;②控制手机使用的时长等.【解析】【分析】(1)根据样本容量=频数÷所占百分比计算即可.(2)根据各频数之和等于样本容量,计算出人数,根据频数÷样本容量=百分比计算即可.(3)答案不唯一,只要合理即可.【详解】(1)样本容量=700÷35=2000(人).(2)每天使用手机小时以上的人数为:2000-40-360-700=900,占全部受调查人数的百分比为:900÷2000=45,故答案为:45,900.(3)①尽量少使用手机;②控制手机使用的时长等.【点睛】本题考查了样本容量,扇形统计图,条形统计图,熟练掌握统计图的意义是解题的关键.5、(1)24,图见解析;(2)36°;(3)480人【解析】【分析】(1)由D组人数及其所占百分比求出被调查总人数,总人数减去A、B、D组人数即可求出C组人数,从而补全图形;(2)用360°乘以A组人数所占比例即可;(3)用总人数乘以样本中B组人数所占比例即可.【详解】解:(1)∵被抽取的总人数为18÷30%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:故答案为:24(2)被抽取的学生成绩在A组的对应扇形圆心角的度数为360°×=36°,故答案为:36°;(3)成绩在B组的大约有2400×=480(人).【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份数学第九章 数据的收集与表示综合与测试一课一练,共20页。试卷主要包含了一组数据分别为,下列调查适合作抽样调查的是等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。
这是一份2021学年第九章 数据的收集与表示综合与测试课后测评,共19页。试卷主要包含了有一组数据,一组数据分别为等内容,欢迎下载使用。