北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共17页。试卷主要包含了下列调查适合作抽样调查的是,数据,,,,,的众数是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据2,9,5,5,8,5,8的中位数是( )
A.2 B.5 C.8 D.9
2、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )
城市 | 太原 | 大同 | 阳泉 | 长治 | 晋城 | 临汾 | 运城 | 吕梁 | 晋中 | 忻州 | 朔州 |
最高峰高度(米) | 2789 | 2420 | 1874 | 2523 | 2358 | 2504.3 | 2358 | 2831 | 2566.6 | 3061.1 | 2333 |
A.2420米 B.2333米 C.2504.3米 D.2566.6米
3、有一组数据:1,2,3,3,4.这组数据的众数是( )
A.1 B.2 C.3 D.4
4、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
5、已知一组数据85,80,x,90的平均数是85,那么x等于( )
A.80 B.85 C.90 D.95
6、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.101万名考生 B.101万名考生的数学成绩
C.2000名考生 D.2000名考生的数学成绩
7、数据,,,,,的众数是( )
A. B. C. D.
8、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况
9、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:
成绩(分) | 36 | 40 | 43 | 46 | 48 | 50 | 54 |
人数(人) | 2 | 5 | 6 | 7 | 8 | 7 | 5 |
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是48分
C.该班学生这次考试成绩的中位数是47分
D.该班学生这次考试成绩的平均数是46分
10、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是( )
A.4,5,4 B.4.5,5,4.5 C.4,5,4.5 D.4.5,5,4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果一组数据中有3个6、4个,2个、1个0和3个x,其平均数为x,那么______.
2、某班同学进行知识竞赛,将所得成绩整理成如图所示的统计图,则这次竞赛成绩的众数是_____分.
3、若、、的平均数为,则、、的平均数为______.
4、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
5、为了落实教育部提出的“双减政策”,历下区各学校积极研发个性化、可选择的数学作业.一天,小明对他学习小组其他三位同学完成数学作业的时间进行了调查,得到的结果分别为:18分钟,20分钟,25分钟.然后他告诉大家说,我们四个人完成数学作业的平均时间是21分钟.请问小明同学完成数学作业的时间是______分钟.
三、解答题(5小题,每小题10分,共计50分)
1、下面是我国近几届奥运会所获金牌数,请指出其中的众数.
第24届 | 第25届 | 第26届 | 第27届 | 第28届 | 第29届 |
5枚 | 16枚 | 16枚 | 28枚 | 32枚 | 51枚 |
2、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试.他们的各项成绩(百分制)如下:
应试者 | 听 | 说 | 读 | 写 |
甲 | 85 | 83 | 78 | 75 |
乙 | 73 | 80 | 85 | 82 |
(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
3、学校小卖部有A,B,C,D,E五种冷饮销售,它们的单价依次是5元、3元、2元、1元和0.5元.某天的冷饮销售情况如图所示,那么,这天该小卖部销售的冷饮的单价的平均值是多少元?
4、某数学课外小组开展数学闯关游戏(游戏一共10关),根据活动结果制成如下两幅尚不完整的统计图.
(1)求;
(2)计算闯9关的人数并补充完整条形统计图;
(3)求数学课外活动小组的平均闯关次数;
(4)再加入名同学闯关,已知这名同学的闯关次数均大于7,若加入后闯关次数的中位数与原闯关次数的中位数相等,则最多是________名.
5、某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3
(1)求这六个分数的平均分;
(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
2、C
【解析】
【分析】
根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).
【详解】
把这11个数从小到大排列为:
1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,
共有11个数,
中位数是第6个数2504.3,
故选:C.
【点睛】
此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.
3、C
【解析】
【分析】
找出数据中出现次数最多的数即可.
【详解】
解:∵3出现了2次,出现的次数最多,
∴这组数据的众数为3;
故选:C.
【点睛】
此题考查了众数.众数是这组数据中出现次数最多的数.
4、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、B
【解析】
【分析】
由平均数的公式建立关于x的方程,求解即可.
【详解】
解:由题意得:(85+x+80+90)÷4=85
解得:x=85.
故选:B.
【点睛】
本题考查了平均数,应用了平均数的计算公式建立方程求解.
6、D
【解析】
【分析】
根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.
【详解】
解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩.
故选:D
【点睛】
本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念.
7、D
【解析】
【分析】
根据众数是一组数据中出现次数最多的数据可求解.
【详解】
解:数据,,,,,的众数是3.
故选择:D.
【点睛】
本题考查众数,掌握众数定义是解题关键.
8、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
9、D
【解析】
【分析】
由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.
【详解】
解:该班一共有:2+5+6+7+8+7+5=40(人),
得48分的人数最多,众数是48分,
第20和21名同学的成绩的平均值为中位数,中位数为(分),
平均数是(分),
故A、B、C正确,D错误,
故选:D.
【点睛】
本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.
10、C
【解析】
【分析】
根据平均数的计算公式、众数的定义、中位数的定义解答.
【详解】
解:平均数=,
数据有小到大排列为1、2、2、4、4、5、5、5、6、6,
则这组数据的众数为5,中位数为,
故选:C.
【点睛】
此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.
二、填空题
1、1
【解析】
【分析】
利用平均数的定义,列出方程即可求解.
【详解】
解:根据题意得
,
解得:,
故答案为:1
【点睛】
本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.
2、70
【解析】
【分析】
根据众数的定义:出现次数最多的数据为众数即可求解.
【详解】
由统计图可得这次竞赛成绩的众数是70分
故答案为70.
【点睛】
此题主要考查统计调查的应用,解题的关键是熟知众数的定义.
3、9
【解析】
【分析】
根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.
【详解】
解:∵、、的平均数为7,
∴,
∴,
故答案为:9
【点睛】
本题考查计算平均数.掌握平均数的计算公式是解题关键.
4、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、21
【解析】
【分析】
设明同学完成数学作业的时间是x分钟,根据平均数的定义求解即可
【详解】
解:设明同学完成数学作业的时间是x分钟.由题意得,
18+20+25+x=21×4,
∴x=21
故答案为:21.
【点睛】
本题考查了平均数的计算,平均数是指在一组数据中所有数据之和再除以数据的个数.
三、解答题
1、16
【解析】
【分析】
由题意根据众数的定义即一组数据中出现次数最多的数值进行分析即可得出答案.
【详解】
解:数据是我国近几届奥运会所获金牌数,分别为:5、16、16、28、32、51,
其中16出现次数最多,所以数据的众数为:16.
【点睛】
本题考查众数的定义,熟练掌握众数的定义即一组数据中出现次数最多的数值是解题的关键,注意有时众数在一组数中有好几个.
2、(1)从成绩看,应该录取甲;(2)从成绩看,应该录取乙.
【解析】
【分析】
利用加权平均数的计算公式计算即可.
【详解】
解:(1)听、说、读、写的成绩按的比确定,
则甲的平均成绩为:(分).
乙的平均成绩为:(分).
显然甲的成绩比乙高,
所以从成绩看,应该录取甲.
(2)听、说、读、写的成绩按照的比确定,
则甲的平均成绩为:(分).
乙的平均成绩为:(分).
显然乙的成绩比甲高,
所以从成绩看,应该录取乙.
【点睛】
本题考查了加权平均数的应用,熟练掌握加权平均数的计算公式是解题的关键.
3、1.985元
【解析】
【分析】
根据加权平均数可直接进行求解.
【详解】
解:由题意得:
(元),
答:这天该小卖部销售的冷饮的单价的平均值是1.985元.
【点睛】
本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.
4、(1);(2)见解析;(3)7.1;(4)
【解析】
【分析】
(1)根据扇形统计图种5种闯关次数的占比和为1即可求解a的值;
(2)用闯关次数为5的人数除以其占比得到总人数,由此即可求出闯9关的人数,由此补全统计图即可;
(3)根据平均数的求解公式求解即可;
(4)把闯关成绩从小到大排序,共20,中位数为10位与11位上数的平均数,利用中位数是7,则要使加入的人数最多,原来成绩中最左侧的7要排在第13位,由此求解即可.
【详解】
解:(1)由题意得:
∴;
(2)由题意得:总人数为人,
∴闯9关的人数为,
补全统计图如下所示:
(3)由题意得数学课外活动小组的平均闯关次数为;
(4)原闯关成绩分别为:5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,
∴原闯关成绩的中位数为,
∵再新加入名同学闯关后,若中位数仍然为7,要保证加入的人数最多,
∴需原成绩中最右侧的7排第13位,
∴最多加入5人,
故答案为:5.
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,求平均数,中位数等等,解题的关键在于准确读懂统计图.
5、(1)这六个分数的平均分是9.35分;(2)该选手的最后得分是9.375分.
【解析】
【分析】
平均数是指在一组数据中所有数据之和再除以数据的个数,按照游戏规则计算即可.
【详解】
解:(1)这六个分数的平均分是(9.5+9.3+9.1+9.5+9.4+9.3)=9.35(分);
答:这六个分数的平均分是9.35分;
(2)该选手的最后得分是(9.3+9.5+9.4+9.3)=9.375(分);
答:该选手的最后得分是9.375分.
【点睛】
本题考查了算术平均数的知识,掌握算术平均数的定义是关键.
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试达标测试,共18页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共19页。试卷主要包含了下列调查中,最适合采用全面调查,数据,,,,,的众数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂检测题,共19页。试卷主要包含了下列说法中等内容,欢迎下载使用。