初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列运算正确的是,下列结论中,正确的是,已知,下列等式成立的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面说法正确的是( )
A.倒数等于它本身的数是1
B.是最大的负整数
C.单项式的系数是,次数是2
D.与是同类项
2、用大小相等的小正方形按一定规律拼成下列图形,则第11个图形中正方形的个数是( )
A.110B.240C.428D.572
3、下列计算中,正确的是( )
A.B.
C.D.
4、下列运算正确的是( )
A.B.
C.D.
5、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.﹣xyz2单项式的系数为﹣1,次数是4
C.单项式a的次数是1,没有系数
D.多项式2x2+xy+3是四次三项式
6、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )
A.1B.9C.4D.6
7、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )
A.593B.595C.597D.599
8、下列关于单项式2x2y的说法正确的是( )
A.系数是1,次数是2B.系数是2,次数是2
C.系数是1,次数是3D.系数是2,次数是3
9、下列等式成立的是( )
A.B.
C.D.
10、下列运算正确的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两船从同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,若船在静水中的速度为v km/h,水流速度为2 km/h,3小时后两船之间的距离是______千米.
2、如图,这是由相同大小的正方形和相同大小的圆按照一定规律摆放而成的,按此规律,则第(n)个图形中圆的个数为______.
3、已知关于x、y的多项式(a+b)+(a-3)-2(b+2)+2ax+1不含项,则当x=-1时,这个多项式的值为__________.
4、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.
5、观察:①32=9=4+5,则有32+42=52;②52=25=12+13,则有52+122=132;③72=49=24+25,则有72+242=252;④92=81=40+41,则有92+402=412,….仔细观察式子的特点,请你用含n(n≥3,且n为自然数)的式子写出第n个式子:___.
三、解答题(5小题,每小题10分,共计50分)
1、化简
(1)5(mn-2m)+3(4m-2mn);
(2)-3(x+2y-1)-(-6y-4x+2).
2、按照要求进行计算:
(1)计算:
(2)利用乘法公式进行计算:
3、已知ax•ay=a5,ax÷ay=a.
(1)求x+y和x﹣y的值;
(2)运用完全平方公式,求x2+y2的值.
4、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为,,所以31568是“最佳拍档数”.
(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.
(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.
5、化简求值:,其中
---------参考答案-----------
一、单选题
1、B
【分析】
选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:.倒数等于它本身的数是,故本选项不合题意;
.是最大的负整数,正确,故本选项符合题意;
.单项式的系数是,次数是3,故本选项不合题意;
.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;
故选:.
【点睛】
本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.
2、D
【分析】
由第一个图形中有:1×2=2个正方形;第二个图形中有:2×3+2-13-1=6+2=8个正方形,第三个图形有:3×4+3-14-1+3-24-2=12+6+2=20个正方形,可以推出第n个图形有nn+1+n-1n+1-1+n-2n+1-+…+n-n+1n+1-n+1,由此求解即可.
【详解】
解:第一个图形中有:1×2=2个正方形;
第二个图形中有:2×3+2-13-1=6+2=8个正方形,
第三个图形有:3×4+3-14-1+3-24-2=12+6+2=20个正方形,
∴可以推出第n个图形有nn+1+n-1n+1-1+n-2n+1-2+…+n-n+1n+1-n+1,
∴第 11 个图形中正方形的个数是11×12+11×10+10×9+9×8+8×7+7×6+6×5+5×4+4×3+3×2+2×1
=132+110+90+72+56+42+30+20+12+6+2
=572个正方形,
故选D.
【点睛】
本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.
3、D
【分析】
根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.
【详解】
A. ,故选项A不正确;
B. ,故选项B不正确;
C. ,故选项C不正确;
D. ,故选项D正确.
故选:D.
【点睛】
本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.
4、D
【分析】
直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.
【点睛】
本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.
5、B
【分析】
根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.
【详解】
解:A、单项式的系数是,次数是3,故本选项错误不符合题意;
B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;
C、单项式a的次数是1,系数是1,故本选项错误不符合题意;
D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.
故选:B.
【点睛】
本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.
6、D
【分析】
根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.
【详解】
解:当y=1时,
ay3+4by+3=a+4b+3=4,
∴a+4b=1,
∵x2﹣2x﹣5=0,
∴x2﹣2x=5,
当y=﹣1时,
﹣2(x+2by)+(x2﹣ay3)
=﹣2x﹣4by+x2﹣ay3
=﹣2x+4b+x2+a
∵a+4b=1,x2﹣2x=5,
∴﹣2x+4b+x2+a
=﹣2x+x2+a+4b
=5+1
=6.
故选:D
【点睛】
本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.
7、D
【分析】
根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.
【详解】
解:第1个图案中小正方形的个数为:8,
第2个图案中小正方形的个数为:,
第3个图案中小正方形的个数为:……
依此规律,第个图案中小正方形的个数为:.
∴,
解得,
故选D
【点睛】
本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.
8、D
【分析】
利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.
【详解】
解:单项式2x2y的系数为2,次数为3.
故选:D.
【点睛】
本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键.
9、D
【分析】
利用同底数幂的乘法法则,完全平方公式,幂的乘方对各项进行运算即可.
【详解】
解:A、,故A不符合题意;
B、,故B不符合题意;
C、,故C不符合题意;
D、,故D符合题意;
故选:D.
【点睛】
本题考查了同底数幂的乘法法则,完全平方公式,幂的乘方,掌握同底数幂的乘法法则,完全平方公式,幂的乘方运算法则是解题的关键.
10、B
【分析】
由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
,故B符合题意;
故C不符合题意;
故D不符合题意;
故选B
【点睛】
本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.
二、填空题
1、
【分析】
分别求出顺水速度和逆水速度,再乘以时间即可.
【详解】
解:∵船在静水中的速度为v km/h,水流速度为2 km/h,
∴船在顺水中的速度为(v+2) km/h,船在逆水中的速度为(v-2) km/h,
3小时后两船之间的距离是(千米)
故答案为:.
【点睛】
本题考查了顺逆流问题,解题关键是明确顺水的速度=船在静水中的速度+水流速度,逆水的速度=船在静水中的速度-水流速度.
2、
【分析】
根据前几个图形4,7,10…发现每增加一组多3个圆得出第1个图形中有4个圆=1×3+1个圆,第2个图形中有7个圆=2×3+1个圆,第3个图形中有10个圆=3×3+1个圆,进而得出第n个图形中有(3n+1)个圆即可.
【详解】
解:第1个图形中有4个圆=1×3+1个圆,
第2个图形中有7个圆=2×3+1个圆,
第3个图形中有10个圆=3×3+1个圆,
…
第n个图形中有(3n+1)个圆
故答案为3n+1.
【点睛】
本题考查图形规律探究,掌握图形规律探究方法是解题关键.
3、-6
【分析】
根据多项式里面不含项,直接令项的系数为0,求出、的值,再将、、的值代入多项式中,求出多项式的值即可.
【详解】
解:多项式里面不含项,
,,即,,
原多项式化简为:,
将x=-1代入多项式中,求得多项式的值为:,
故答案为:.
【点睛】
本题主要是考查了整式加减中的无关项问题,解题的关键在于熟练掌握整式的加减计算法则以及不含某项即某项的系数为0.
4、101x10
【分析】
分析题中每个单项式,系数为(n2+1),含未知数的部分为:xn,则第n项应为:(n2+1)xn.
【详解】
解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,
则第n个单项式为:(n2+1)xn.
故第10个单项式为:(102+1)x10=101x10.
故答案为:101x10.
【点睛】
本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.
5、,则有.
【分析】
根据① ,则有;②,则有;③,则有,找到规律进行求解即可.
【详解】
解:∵① ,则有;②,则有;③,则有;④,则有,
∴可以得到第n个式子为:,则有,
故答案为:,则有.
【点睛】
本题主要考查了数字类的规律型问题,解题的关键在于能够根据题意找到规律进行求解.
三、解答题
1、(1);(2).
【解析】
【分析】
(1)由题意先去括号,进而进行合并同类项即可得出结果;
(2)根据题意先去括号,进而进行合并同类项即可得出结果.
【详解】
解:(1)5(mn-2m)+3(4m-2mn)
(2)-3(x+2y-1)-(-6y-4x+2)
【点睛】
本题考查整式的加减,熟练掌握去括号原则和合并同类项原则是解题的关键.
2、(1)(2)
【解析】
【分析】
(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可;
(2)运用平方差公式计算即可.
【详解】
解:(1)
=
=
=
=
(2)
=
=
=.
【点睛】
本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.
3、(1)x+y=5,x﹣y=1;(2)13
【解析】
【分析】
(1)根据同底数幂的乘除法法则解答即可;
(2)根据完全平方公式解答即可.
【详解】
解:(1)因为ax•ay=a5,ax÷ay=a,
所以ax+y=a5,ax﹣y=a,
所以x+y=5,x﹣y=1;
(2)因为x+y=5,x﹣y=1,
所以(x+y)2=25,(x﹣y)2=1,
所以x2+2xy+y2=25①,x2﹣2xy+y2=1②,
①+②,得2x2+2y2=26,
所以x2+y2=13.
【点睛】
本题考查了同底数幂的乘除法,完全平方公式.解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(a±b)2=a2±2ab+b2.
4、(1)是;(2)4152或4661
【解析】
【分析】
(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;
(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得是整数,进而可得出x、y的值,即可得答案.
【详解】
(1)1324的“顺数”与“逆数”分别为16324和13264,
∵=180,
∴1324是“最佳拍档数”.
故答案为:是
(2)设十位数字为x,百位数字为y,
∵个位数字与十位数字之和为7,百位数字不大于十位数字,
∴个位数字为(7),
∴N=4000+100y+10x+7,0≤x≤7,0≤y≤7,y≤x,
[(46000+100y+10x+7)(40000+1000y+100x+60+7)]÷17
=
=349,
∵N为“最佳拍档数”,
∴为整数,
∵x、y都为整数,0≤x≤7,0≤y≤7,y≤x,
∴或,
∴N=4152或N=4661.
【点睛】
本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.
5、;.
【解析】
【分析】
由题意先利用整式的加减运算法则进行化简,进而将代入原式计算即可
【详解】
解:
代入可得:
【点睛】
本题考查整式的加减中的化简求值,熟练掌握整式的加减运算法则是解题的关键
相关试卷
这是一份2020-2021学年第六章 整式的运算综合与测试测试题,共16页。试卷主要包含了下列运算正确的是,若,,,则的值为,观察下列各式等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了下列说法正确的是,下列关于整式的说法错误的是,下列计算正确的是,下列运算中正确的是,已知整数,下列叙述中,正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了观察下列这列式子,下列结论中,正确的是,下列运算正确的是等内容,欢迎下载使用。