初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.多项式x2+y2﹣1的常数项是1D.多项式x2+2x+18是二次三项式2、下列计算中,正确的是( )A. B.C. D.3、下列说法正确的是( )A.﹣的系数是﹣5B.1﹣2ab+4a是二次三项式C.不属于整式D.“a,b的平方差”可以表示成(a﹣b)24、下列说法正确的是( )A.是单项式 B.0不是单项式C.是单项式 D.是单项式5、一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是( )A.66 B.99 C.110 D.1216、下列关于单项式2x2y的说法正确的是( )A.系数是1,次数是2 B.系数是2,次数是2C.系数是1,次数是3 D.系数是2,次数是37、下列运算正确的是( )A. B. C. D.8、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作10次,则M10N10=( )A.2 B. C. D.9、如图所示,有一些点组成的三角形的图形,每条“边”(包括两个顶点)有n()个点,每个图形总的点数可以表示为s,当时,s的值是( )A.36 B.33 C.30 D.2710、下列计算正确的是( )A.3(x﹣1)=3x﹣1 B.x2+x2=2x4C.x+2y=3xy D.﹣0.8ab+ab=0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式-的系数是__________.2、已知,则的值为________.3、对a,b,c,d定义一种新运算:,如,计算_________.4、单项式的系数是_______,次数是______.5、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2.2、先化简,再求值:,其中,.3、计算:.4、在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式的二次项系数,b是绝对值最小的数,c是单项式的次数.请直接写出a、b、c的值并在数轴上把点A,B,C表示出来.5、计算题:①(﹣18)﹣(+3)﹣(﹣6)+(﹣12);②;③;④﹣32﹣23﹣[(﹣9)3+93]+(﹣1)2017;⑤先化简,再求值(2x2﹣2y2)﹣3(x2y+x2)+3(x2y+y2),其中x=﹣1,y=2. ---------参考答案-----------一、单选题1、D【详解】根据单项式和多项式的相关定义解答即可得出答案.【分析】解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.故选D.【点睛】本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.2、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.3、B【分析】根据代数式,整式,单项式与多项式的相关概念解答即可.【详解】解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;C、属于整式,原说法错误,故此选项不符合题意;D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;故选:B.【点睛】此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.4、C【分析】根据单项式的定义逐个判断即可.【详解】解:A、是分式,不是整式,不是单项式,故本选项不符合题意;B、0是单项式,故本选项不符合题意;C、是单项式,正确,故本选项符合题意;D、是多项式,不是单项式,故本选项不符合题意;故选:C.【点睛】本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.5、D【分析】先分别用代数式表示出原两位数和新两位数,然后根据整式的加减计算法则求出新两位数与原两位数的和,由此求解即可.【详解】解:∵一个两位数个位上的数是1,十位上的数是x,∴这个两位数为,∴把1与x对调后的新两位数为,∴,∴新两位数与原两位数的和一定是11的倍数,∵原两位数十位上的数字是x,∴(的正整数)∴,∴新两位数与原两位数的和不可能是121,故选D.【点睛】本题主要考查了整式加减的应用,解题的关键在于能够熟练掌握整式的加减计算法则.6、D【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【详解】解:单项式2x2y的系数为2,次数为3.故选:D.【点睛】本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键.7、B【分析】由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;,故B符合题意;故C不符合题意;故D不符合题意;故选B【点睛】本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.8、C【分析】根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,从而找到MnNn的规律,即可求出结果.【详解】解:∵线段MN=20,线段AM和AN的中点M1,N1,∴M1N1=AM1﹣AN1=AM﹣AN=(AM﹣AN)=MN=×20=10.∵线段AM1和AN1的中点M2,N2;∴M2N2=AM2﹣AN2=AM1﹣AN1=(AM1﹣AN1)=M1N1=××20=×20=5.发现规律:MnNn=×20,∴M10N10=×20.故选:C.【点睛】本题考查两点间的距离,根据线段中点的定义得出MnNn=×20是解题关键.9、C【分析】当时,,当时,,当时,,当时,,可以推出当时,,由此求解即可.【详解】解:当时,,当时,,当时,,当时,,∴当时,,∴当时,,故选C.【点睛】本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.10、D【分析】根据去括号和合并同类项的法则逐一判断即可.【详解】解:A、,计算错误,不符合题意;B、计算错误,不符合题意;C、与不是同类项,不能合并,不符合题意;D、,计算正确,符合题意;故选D.【点睛】本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.二、填空题1、【分析】根据单项式中系数的概念求解即可.【详解】解:单项式-的系数是:.故答案为:.【点睛】此题考查了单项式中系数的概念,解题的关键是熟练掌握单项式中系数的概念.单项式:由数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.2、25【分析】把已知条件,根据完全平方公式展开,然后代入数据计算即可求解.【详解】解:∵,
∴,
∵,
∴.
故答案是:25.【点睛】本题考查了完全平方公式,解题的关键是熟记公式结构,灵活运用.3、【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【详解】解:.故答案为:.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.4、 2 【分析】根据单项式的次数与系数的定义解决此题.【详解】解:根据单项式的次数与系数的定义,单项式系数是,次数是2.故答案为:,2.【点睛】本题主要考查单项式的次数与系数,熟练掌握单项式的次数与系数的定义是解决本题的关键.单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5、101x10【分析】分析题中每个单项式,系数为(n2+1),含未知数的部分为:xn,则第n项应为:(n2+1)xn.【详解】解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,
则第n个单项式为:(n2+1)xn.
故第10个单项式为:(102+1)x10=101x10.
故答案为:101x10.【点睛】本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.三、解答题1、﹣8x2﹣15,-47【解析】【分析】先去括号合并同类项,再把x=2代入计算.【详解】解:2(﹣4x2+2x﹣8)﹣(4x﹣1)=﹣8x2+4x﹣16﹣4x+1=﹣8x2﹣15,∵x=2,∴原式=﹣8×22﹣15=﹣32﹣15=﹣47.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.2、;.【解析】【分析】先根据完全平方公式及平方差公式进行化简,然后计算除法,最后将已知值代入求解即可.【详解】解:,,,;当,时,原式.【点睛】题目主要考查整式的混合运算,熟练掌握运算法则及完全平方公式和平方差公式是解题关键.3、【解析】【分析】先运用乘法公式进行计算,再合并同类项即可.【详解】解:,=,=,=.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算.4、,,,见解析【解析】【分析】根据多项式中次数为2的单项式中的数字因数得出a=-1,根据绝对值最小的数是0得出b=0,根据单项式的次数是所有字母的指数和2+1=3,得出c=2+1=3,再把各数在数轴上表示即可.【详解】解:∵a是多项式的二次项系数,∴a=-1,∵b是绝对值最小的数,∴b=0,∵c是单项式的次数.∴c=2+1=3,,将各数在数轴上表示如下: 【点睛】本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.5、①﹣27;②﹣24;③2;④﹣18;⑤﹣x2+y2,3【解析】【分析】①将减法统一成加法,然后根据有理数加法交换律和加法结合律进行简便计算;②将除法统一成乘法,然后根据有理数乘法交换律和乘法结合律进行简便计算;③使用乘法分配律进行简便计算;④先算乘方,然后先算小括号里面的,再算括号外面的;⑤原式去括号,合并同类项进行化简,然后代入求值.【详解】解:①原式=﹣18+(﹣3)+6+(﹣12)=[(﹣18)+(﹣12)]+[(﹣3)+6]=﹣30+3=﹣27;②原式=﹣6×26××=[(﹣6)×]×[26×]=2×(﹣12)=﹣24;③原式=×48+×48﹣×48+×48=﹣44+56﹣36+26=2;④原式=﹣9﹣8﹣(﹣93+93)﹣1=﹣9﹣8﹣0﹣1=﹣18;⑤原式=2x2﹣2y2﹣3x2y﹣3x2+3x2y+3y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点睛】此题主要考查了有理数的混合运算,整式的加减—化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算);掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试随堂练习题,共15页。试卷主要包含了计算的结果是,单项式的系数和次数分别是,把式子去括号后正确的是,下列运算正确的是,下列各式中,计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列计算正确的是,下列式子正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份初中第六章 整式的运算综合与测试同步达标检测题,共18页。试卷主要包含了下列说法正确的是,把式子去括号后正确的是,下列说法不正确的是等内容,欢迎下载使用。