2021学年第六章 整式的运算综合与测试课后复习题
展开
这是一份2021学年第六章 整式的运算综合与测试课后复习题,共16页。试卷主要包含了下列叙述中,正确的是,若,,求的值是,把多项式按的降幂排列,正确的是,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A.a3•a3=a9 B.a5÷a3=a2 C.(a3)2=a5 D.(a2b)3=a2b32、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.63、下列计算正确的是( )A.a+b=ab B.7a+a=7a2C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b4、下列叙述中,正确的是( )A.单项式的系数是B.a,π,52都是单项式C.多项式3a3b+2a2﹣1的常数项是1D.是单项式5、若,,求的值是( )A.6 B.8 C.26 D.206、把多项式按的降幂排列,正确的是( )A. B.C. D.7、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )A.30 B.33 C.35 D.428、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201129、下列运算正确的是( )A.(a2)3=a6 B.a2•a3=a6C.a7÷a=a7 D.(﹣2a2)3=8a610、下列说法不正确的是( )A.的系数是 B.2不是单项式C.单项式的次数是2 D.是多项式第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a=,则a2﹣2a﹣3的值为_______.2、将同样大小的正方形按下列规律摆放,下面的图案中,在第n个图案中所有正方形的个数是_________个.(用含n的式子表示)3、多项式的次数是_____.4、已知,,则多项式的值为______.5、在边长为a的正方形中挖去一个边长为b的小正方形(其中a>b)(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证的乘法公式是_______________________ .三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:2(3a2b﹣ab2)﹣(﹣ab2+3a2b),其中a=﹣1,b=.2、一辆大客车上原有人,中途有一半的乘客下车,又上来若干乘客,这时车上共有乘客人.(1)求中途上车的乘客有多少人;(温馨提示:请用含有m,n的式子表示)(2)当,时,中途上车的乘客有多少人?3、先化简,再求值:,其中,.4、已知多项式,.(1)化简:;(2)当,时,求的值.5、定义一种新运算:对任意有理数a,b都有a⊕b=a﹣2b,例如:2⊕3=2﹣2×3=﹣4.(1)求﹣3⊕2的值;(2)化简并求值:(x﹣2y)⊕(x+2y),其中x=3⊕2,y=﹣1⊕4. ---------参考答案-----------一、单选题1、B【分析】直接利用积的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.【详解】解:A.a3•a3=a6,故此选项不合题意;B.a5÷a3=a2,故此选项符合题意;C.(a3)2=a6,故此选项不合题意;D.(a2b)3=a6b3,故此选项不合题意;故选:B.【点睛】此题主要考查了积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.3、C【分析】根据整式的加减运算法则和去括号法则即可求出答案.【详解】解:A、a与b不是同类项,故不能合并,故A不符合题意.B、7a+a=8a,故B不符合题意.C、3x2y﹣2yx2=x2y,故C符合题意.D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.故选C.【点睛】本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.4、B【分析】根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.【详解】解:A.单项式的系数是,故本选项不符合题意;B.a,π,52都是单项式,故本选项符合题意;C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;D.是多项式,不是单项式,故本选项不符合题意;故选:B.【点睛】本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.5、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:∵,∴,∵,∴,∴.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.6、D【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:把多项式按的降幂排列:,故选:D【点睛】本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.7、C【分析】由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.【详解】解:∵第1个图形需要黑色棋子的个数是2×3-3=3, 第2个图形需要黑色棋子的个数是3×4-4=8, 第3个图形需要黑色棋子的个数是4×5-5=15, … ∴第5个图形需要黑色棋子的个数是. 故选:C.【点睛】本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.8、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.9、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.【详解】解:A、,原选项正确,故符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项错误,故不符合题意;故选A.【点睛】本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.10、B【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.【详解】解:的系数是,故A不符合题意;2是单项式,原说法错误,故B符合题意;单项式的次数是2,故C不符合题意;是多项式,故D不符合题意;故选B【点睛】本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.二、填空题1、-2【分析】将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可.【详解】解: ,将代入得:.故答案为:-2.【点睛】本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键.2、4n-1【分析】根据题意分析可得:第1个图案中正方形的个数4×1-1=3个,第2个图案中正方形的个数4×2-1=7个,…,根据找到的规律可求出第n个图案中所有正方形的个数.【详解】解:观察图案,发现:
第1个图案中,有4×1-1=3个正方形;
第2个图案中,有4×2-1=7个正方形;
第3个图案中,有4×3-1=11个正方形;
……
则第n个图案中正方形的个数是4n-1.故答案为:4n-1.【点睛】此题考查了整式的规律问题,解题的关键是正确分析题目中正方形的个数和序号的关系.3、5【分析】根据多项式次数的概念来解答.【详解】解:代数式次数是五次,故答案为:5.【点睛】本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.4、9【分析】多项式可变形为,然后整体代入即可求解.【详解】解:,∵,,∴原式,故答案为:9.【点睛】本题主要考查了代数式求值,解题关键是掌握整体思想,将代数式变形为已知式相关的形式求解.5、a2-b2=(a+b)(a-b)【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2-b2;第二个图形阴影部分是一个长是(a+b),宽是(a-b)的长方形,面积是(a+b)(a-b);这两个图形的阴影部分的面积相等.【详解】解:阴影部分的面积=(a+b)(a-b)=a2-b2;
因而可以验证的乘法公式是(a+b)(a-b)=a2-b2,故答案为:a2-b2=(a+b)(a-b).【点睛】本题主要考查了平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.三、解答题1、3a2b﹣ab2,【解析】【分析】先去括号,再合并同类项,最后把a、b的值代入计算即可求出答案.【详解】解:原式=6a2b﹣2ab2+ab2﹣3a2b=3a2b﹣ab2当a=﹣1,b=时,原式=3×(﹣1)2×﹣(﹣1)×()2=1+=.【点睛】本题考查整式的化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2、(1);(2)18【解析】【分析】(1)根据等量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,即可求解;(2)把,代入上式可得上车乘客人数.【详解】∵车上现有人数=车上原有乘客数-中途下车人数+上车人数∴=+中途上车人数∴中途上车人数==(2)把,代入得即当,时,中途上车的乘客有18人.【点睛】本题考查了整式的加减,要分析透题中的数量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,用代数式表示各个量后代入即可.3、,-20【解析】【分析】原式去括号,再合并同类项化简,继而将a、b的值代入计算可得.【详解】解:原式.当,时,原式.【点睛】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.4、(1);(2)0【解析】【分析】(1)把,代入化简即可;(2)把,代入(1)中化简出的式子中计算即可.【详解】(1);(2),,.【点睛】本题考查整式的化简求值,掌握整式的运算法则与运算顺序是解题的关键.5、(1)-7;(2),55【解析】【分析】(1)根据,即可得到;(2)由题意得可得,然后求出x、y的值,最后代值计算即可.【详解】解:(1)∵,∴;(2),∵,,∴原式.【点睛】本题主要考查了有理数的四则运算,整式的化简求值,解题的关键在于正确理解题意.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试测试题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下面说法正确的是,下列关于整式的说法错误的是,下列去括号正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了下列计算中,正确的是,多项式的次数和常数项分别是,已知,下列运算正确的是,下列计算正确的有等内容,欢迎下载使用。