初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后作业题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后作业题,共18页。试卷主要包含了下列说法正确的是,下列计算正确的是,下列各式中,计算正确的是,下列表述正确的是,已知下列一组数等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算正确的是( )
A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
2、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作10次,则M10N10=( )
A.2 B. C. D.
3、下列运算正确的是( )
A. B. C. D.
4、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
5、下列计算正确的是( )
A. B.
C. D.
6、下列各式中,计算正确的是( )
A.(3a)2=3a2 B.-2(a-1)=-2a+1
C.5a2-a2=4a2 D.4a2b-2ab2=2ab2
7、下列表述正确的是( )
A.单项式ab的系数是0,次数是2 B.的系数是,次数是3
C.是一次二项式 D.的项是,3a,1
8、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )
A.左侧1010厘米 B.右侧1010厘米
C.左侧1011厘米 D.右侧1011厘米
9、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )
A. B. C. D.
10、观察下列这列式子:,,,,,…,则第n个式子是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、单项式的次数是_____________.
2、若代数式2a-b的值为3,则代数式4a-2b+1的值是_______.
3、单项式的系数是_______.
4、如图,边长为a和2的两个正方形拼在一起,试写出阴影部分的面积为_____.(结果要化简)
5、对a,b,c,d定义一种新运算:,如,计算_________.
三、解答题(5小题,每小题10分,共计50分)
1、(1)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分按照图中的线段分割成两个图形.请将分割成的这两个图形拼成一个常见的几何图形,要求画出两种不同的图形,并用图1剪拼前后的两个图形验证一个乘法公式.
(2)如图2,某小区的花园起初被设计为边长为a米的正方形,后因道路的原因,设计修改为:南边往北平移x(x<a)米,而东边往东平移x米,问:
①修改后的花园面积是多少?
②在周长为定值4a的长方形中,什么时候其面积最大?并说明理由.
2、(1)已知多项式的值与字母x的取值无关,求多项式的值.
(2)当时,多项式的值为5,当时,多项式的值是多少?
3、做大小不同的两个长方体纸盒,尺寸如下(单位:cm):
| 长 | 宽 | 高 |
小纸盒 | 2b | 1.5c | |
大纸盒 | 2.5 | 4b | 3c |
(1)做这两个纸盒共用材料多少平方厘米?
(2)做大纸盒比做小纸盒多用材料多少平方厘米?
4、先化简,再求值:
5、先化简,再求值:,其中,.
---------参考答案-----------
一、单选题
1、A
【分析】
根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.
【详解】
解:A选项,原式=4a,故该选项符合题意;
B选项,原式=b6,故该选项不符合题意;
C选项,原式=a2,故该选项不符合题意;
D选项,原式=a10,故该选项不符合题意;
故选:A.
【点睛】
此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.
2、C
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,从而找到MnNn的规律,即可求出结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1﹣AN1
=AM﹣AN
=(AM﹣AN)
=MN
=×20
=10.
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2﹣AN2
=AM1﹣AN1
=(AM1﹣AN1)
=M1N1
=××20
=×20
=5.
发现规律:
MnNn=×20,
∴M10N10=×20.
故选:C.
【点睛】
本题考查两点间的距离,根据线段中点的定义得出MnNn=×20是解题关键.
3、D
【分析】
根据整式的运算法则逐项检验即可.
【详解】
解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;
B、,原计算错误,故该选项不符合题意;
C、,原计算错误,故该选项不符合题意;
D、,正确,故该选项符合题意;
故选:D.
【点睛】
本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.
4、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
5、C
【分析】
由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
故B不符合题意;
,运算正确,故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.
6、C
【分析】
分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.
【详解】
解:A、(3a)2=9a2,故选项错误,不符合题意;
B、-2(a-1)= -2a+2,故选项错误,不符合题意;
C、5a2-a2=4a2,故选项正确,符合题意;
D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.
故选:C.
【点睛】
此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.
7、C
【分析】
直接利用单项式的次数与系数以及多项式的特点分别分析得出答案.
【详解】
解:A.单项式ab的系数是1,次数是2,故此选项不合题意;
B.的系数是,次数是5,故此选项不合题意;
C.x−1是一次二项式,故此选项符合题意;
D.的项是,3a,−1,故此选项不合题意;
故选:C.
【点睛】
此题主要考查了多项式和单项式,正确掌握单项式的次数确定方法是解题关键.
8、D
【分析】
由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.
【详解】
解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,
则此时对应的数为:
第三次向左移动3厘米,第四次向右移动4厘米,
则此时对应的数为:
所以每两次移动的结果是往右移动了1个单位长度,
所以移动第2022次到达点B,则对应的数为:
所以点B在点A点的右侧1011厘米处.
故选D
【点睛】
本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
9、B
【分析】
根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.
【详解】
解:∵1=;
;
;
∴第n个数是:.
故选:B.
【点睛】
本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
10、C
【分析】
根据题意得:第1个式子:,第2个式子:,第3个式子:,第4个式子:,第5个式子:,…,由此发现规律,即可求解 .
【详解】
解:根据题意得:第1个式子:,
第2个式子:,
第3个式子:,
第4个式子:,
第5个式子:,
…,
由此发现,第 个式子: .
故选:C
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
二、填空题
1、3
【分析】
根据单项式的次数的定义得出即可.
【详解】
解:单项式的次数是1+2=3,
故答案为:3.
【点睛】
本题考查了单项式的次数的定义,能熟记单项式的次数的定义的内容是解此题的关键,注意:单项式中的字母的指数的和,叫单项式的次数.
2、7
【分析】
代数式中4a-2b是2a-b的2倍,故用整体代入法即可解决.
【详解】
4a-2b+1=2(2a-b)+1=2×3+1=7
故答案为:7
【点睛】
本题考查了求代数式的值,运用整体思想是解答本题的关键.
3、
【分析】
单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数.
【详解】
解:中为数字因式
即为单项式的系数
故答案为:.
【点睛】
本题考察了单项式的系数.解题的关键在于区分单项式中的数字因式与字母因式.
4、
【分析】
根据题意利用阴影部分的面积为:S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF进而求出答案.
【详解】
解:如图所示:当a=4cm时阴影部分的面积为:
S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF
=a×a+2×2+×(a- 2)×2﹣×a×a﹣×2×(a+ 2)
=
=,
故答案为:.
【点睛】
此题主要考查了列代数式和整式的运算,正确理解总面积减去空白面积=阴影部分面积,列出算式进行计算是解题关键.
5、
【分析】
根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.
【详解】
解:.
故答案为:.
【点睛】
本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.
三、解答题
1、(1)见解析;(2)(a+x)(a-x)=a2-x2;②长宽相等,均为a时,面积最大,理由见解析
【解析】
【分析】
(1)可以拼成梯形或拼成长为a+b、宽为a﹣b的长方形,利用不同方法表示同一图形面积来验证平方差公式;
(2)①修改后2的花园是个长为(a+x)米、宽为(a﹣x)米的长方形,由长方形的面积=长×宽;②在周长为定值4a的长方形中,当边长为a为正方形时,面积最大.
【详解】
解:(1)拼成的图形如图所示.
第一种:
(a﹣b)a+(a﹣b)b=a2﹣b2 ,即(a+b)(a﹣b)=a2﹣b2
第二种:
即(a+b)(a﹣b)=a2﹣b2
(2)①修改后的花园面积是(a+x)(a-x)=a2-x2.
②当长宽相等,均为a时,面积最大.
理由:设长为x,宽为y,则x+y=2a.
则面积为S=xy=[(x+y)2-(x-y)2]=[(2a)2-(x-y)2],
显然,当x=y时,S取得最大值a2.
【点睛】
此题主要考查乘法公式的应用以及与图形的面积的结合,解题关键是树立数形结合思想,利用平方差公式求解.
2、(1)-9;(2)-1
【解析】
【分析】
(1)利用多项式的定义得出m,n的值,进而代入求出即可;
(2)把代入得,再将代入求出即可.
【详解】
①
,
由题意可得,,
所以,,
将去括号,得,
合并同类项得,
将,代入,得,
所以代数式的值为.
②解:把代入得,
当时,
.
【点睛】
此题主要考查了整式的加减,多项式的定义,得出关于x系数之间关系是解题关键.
3、(1)24b+18c+30bc;(2)16b+12c+18bc
【解析】
【分析】
(1)用矩形的面积公式分别求出大小纸盒的用料即可;
(2)用大纸盒的用料减去做小纸盒的用料即可.
【详解】
解:(1)(4b+3c+6bc)+(20b+15c+24bc)
=(24b+18c+30bc)平方厘米
(2)(20b+15c+24bc)-(4b+3c+6bc)=(16b+12c+18bc)平方厘米
【点睛】
本题考查了几何体的表面积列代数式以及合并同类项,是基础知识比较简单,关键是对矩形面积公式的应用.
4、-5+5xy,0
【解析】
【分析】
先去括号,后合并同类项,最后代入求值即可.
【详解】
原式=
=-5+5xy,
当x=1,y=-1时,
原式= -5×+5×1×(-1)
=0.
【点睛】
本题考查了去括号法则,合并同类项,正确去括号,合并同类项是解题的关键.
5、,
【解析】
【分析】
先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.
【详解】
解:原式
,
将,代入得:.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了把多项式按的降幂排列,正确的是,不一定相等的一组是,计算的结果是,下列运算正确的是,下列表述正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共19页。试卷主要包含了下列计算正确的是,下列式子正确的,下列各式中,计算结果为的是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试同步训练题,共18页。试卷主要包含了下列运算正确的是,下列各式中,计算结果为的是,下列结论中,正确的是,若,,求的值是等内容,欢迎下载使用。