初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了把式子去括号后正确的是,已知,下列运算正确的是,下列各式中,计算正确的是,已知下列一组数等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,则a,b的值可以是( )
A.0,0 B.0,﹣1 C.2,0 D.2,﹣1
2、下列计算中,结果正确的是( )
A.
B.
C.
D.
3、下列关于整式的说法错误的是( )
A.单项式的系数是-1 B.单项式的次数是3
C.多项式是二次三项式 D.单项式与ba是同类项
4、小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )
A.(2a+b2) B.(a+2b) C.(3ab+2b2) D.(2ab+b2)
5、把式子去括号后正确的是( )
A. B. C. D.
6、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )
A.1 B.9 C.4 D.6
7、下列运算正确的是( )
A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x2
8、下列各式中,计算正确的是( )
A.(3a)2=3a2 B.-2(a-1)=-2a+1
C.5a2-a2=4a2 D.4a2b-2ab2=2ab2
9、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )
A. B. C. D.
10、下列去括号正确的是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,,则=______________.
2、计算__________.
3、如下图,把个两个电阻R1,R2串联起来,线路AB上的电流为I,电压为U,则,当,,时,则U的值为___________.
4、已知代数式的值是7,则代数式的值是_______.
5、、两个数在数轴上的位置如图所示,则化简的结果是________.
三、解答题(5小题,每小题10分,共计50分)
1、已知A=,B=,
(1)求A﹣2B;
(2)若A-2B的值与的取值无关,求的值.
2、解答下列问题
(1)先化简再求值: 已知, 求 的值
(2)已知 互为相反数,互为倒数, 的绝对值是2, 求+的值
3、先化简,再求值:,其中,.
4、已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1
(1)求A﹣2B的值;
(2)a=﹣3,b=时,求A﹣2B的值.
5、阅读下列材料:
1×2=(1×2×3﹣0×1×2);
2×3=(2×3×4﹣1×2×3);
3×4=(3×4×5﹣2×3×4);
由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+19×20(写出过程).
(2)猜想:1×2+2×3+3×4+…+n(n+1)= .
(3)探究计算:1×2×3+2×3×4+3×4×5+…+17×18×19.
---------参考答案-----------
一、单选题
1、C
【分析】
根据二次二项式的定义得到,求出,得到选项.
【详解】
解:∵(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,
∴,
∴,
故选:C.
【点睛】
此题考查多项式的次数及项数的定义,熟记定义是解题的关键.
2、D
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.
【详解】
解:不是同类项,故A不符合题意;
故B不符合题意;
不是同类项,故C不符合题意;
故D符合题意;
故选D
【点睛】
本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.
3、C
【分析】
根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.
【详解】
解:A、单项式的系数是-1,说法正确,不符合题意;
B、单项式的次数是3,说法正确,不符合题意;
C、多项式是三次二项式,说法错误,符合题意;
D、单项式与ba是同类项,说法正确,不符合题意;
故选C.
【点睛】
本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.
4、A
【分析】
根据多项式除单项式的运算法则计算即可.
【详解】
∵(4a2b+2ab3)÷2ab=2a+b2,
∴被墨汁遮住的一项是2a+b2.
故选:A.
【点睛】
本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
5、C
【分析】
由去括号法则进行化简,即可得到答案.
【详解】
解:,
故选:C
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.
6、D
【分析】
根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.
【详解】
解:当y=1时,
ay3+4by+3=a+4b+3=4,
∴a+4b=1,
∵x2﹣2x﹣5=0,
∴x2﹣2x=5,
当y=﹣1时,
﹣2(x+2by)+(x2﹣ay3)
=﹣2x﹣4by+x2﹣ay3
=﹣2x+4b+x2+a
∵a+4b=1,x2﹣2x=5,
∴﹣2x+4b+x2+a
=﹣2x+x2+a+4b
=5+1
=6.
故选:D
【点睛】
本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.
7、C
【分析】
根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.
【详解】
解:A、 ,故本选项错误,不符合题意;
B、 ,故本选项错误,不符合题意;
C、 ,故本选项正确,符合题意;
D、 ,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.
8、C
【分析】
分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.
【详解】
解:A、(3a)2=9a2,故选项错误,不符合题意;
B、-2(a-1)= -2a+2,故选项错误,不符合题意;
C、5a2-a2=4a2,故选项正确,符合题意;
D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.
故选:C.
【点睛】
此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.
9、B
【分析】
根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.
【详解】
解:∵1=;
;
;
∴第n个数是:.
故选:B.
【点睛】
本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
10、B
【分析】
根据去括号法则分别去括号即可.
【详解】
解:A、,故A错误;
B、,故B正确;
C、,故C错误;
D、,故D错误.
故选:B.
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“−”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.
二、填空题
1、90
【分析】
跟胡同底数幂的乘法和幂的乘方公式的逆运算,即可求解.
【详解】
解:=,
故答案是:90.
【点睛】
本题主要考查同底数幂的乘法和幂的乘方公式,熟练掌握它们的逆运用是解题的关键.
2、
【分析】
根据单项式相乘的运算法则求解即可.
【详解】
解:.
故答案为:.
【点睛】
此题考查了单项式相乘,解题的关键是熟练掌握单项式相乘的运算法则.
3、295
【分析】
将,,,代入求解即可.
【详解】
解:将,,,代入可得:
,
,
,
故答案为:295.
【点睛】
题目主要考查求代数式的值,理解题意是解题关键.
4、4
【分析】
根据题意,可先求出x2+3x的值,然后整体代入所求代数式求值即可.
【详解】
解:∵=7,
∴x2+3x=2,
则3(x2+3x)=6,
∴3x2+9x-2=3(x2+3x)-2=4.
故答案为:4.
【点睛】
本题考查了代数式求值,解题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+3x的值,然后利用“整体代入法”求代数式的值.
5、a
【分析】
由数轴得,,,去绝对值有,从而得出结果.
【详解】
解:,
故答案为:.
【点睛】
本题考查了数轴,去绝对值.解题的关键与难点在于判断绝对值里数值的正负.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)将A、B的值代入A﹣2B化简即可.
(2)与a的取值无关,即a的系数为零.
【详解】
解:(1)A-2B=
去括号得A-2B =
化简得A-2B=
(2)A-2B =
∵A-2B的值与a的取值无关
∴
∴
【点睛】
本题考查了整式的加减以及整式加减中无关型的问题,这类题需要将整式进行整理化简,化成关于某个未知量的降幂或升幂的形式后,令题中不含某次项的系数为零即可.
2、(1),9;(2)5或-11
【解析】
【分析】
(1)先由非负数性质求出x、y的值,再将所求代数式去括号、合并同类项,代入即可得答案;
(2)利用相反数,倒数以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.
【详解】
解:(1)
由题意可知, , 代入上式
(2) 由题意可知,
当时,
.
当时,
【点睛】
本题考查整式的加减--化简求值,非负数性质,相反数、倒数和绝对值的意义及代数式求值,熟练掌握法则是解题关键.
3、
【解析】
【分析】
先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.
【详解】
解:
当,时,
原式.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.
4、(1)ab﹣2a+1;(2)5
【解析】
【分析】
(1)将已知整式代入,然后去括号,合并同类项进行化简;
(2)将已知字母的值代入(1)中的化简结果,从而求值.
【详解】
解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,
∴A﹣2B=2a2+3ab﹣2a﹣1-2(a2+ab﹣1)
=2a2+3ab﹣2a﹣1﹣2a2-2ab+2
=ab﹣2a+1;
(2)当a=﹣3,b=时,
原式=.
【点睛】
本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.
5、(1)2660;过程见解析;(2)[n×(n+1)×(n+2)];(3)29070.
【解析】
【分析】
(1)根据题意规律进行解答即可;
(2)根据题意规律进行解答即可;
(3)仿照(1)(2)可得中的规律进行解答即可.
【详解】
(1)1×2+2×3+3×4+…+19×20
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(19×20×21﹣18×19×20)
=(19×20×21)
=19×20×7
=2660;
(2)1×2+2×3+3×4+…+n(n+1)
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+ [n×(n+1)×(n+2)﹣(n﹣1)×n×(n+1)]
= [n×(n+1)×(n+2)],
故答案为: [n×(n+1)×(n+2)];
(3)1×2×3+2×3×4+3×4×5+…+17×18×19
=(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+(3×4×5×6﹣2×3×4×5)+…+(17×18×19×20﹣16×17×18×19)
=(17×18×19×20)
=29070.
【点睛】
本题考查了数字的变化规律,根据所给式子,探索式子的一般规律,并能准确计算是解题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共16页。试卷主要包含了下列式子正确的,不一定相等的一组是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试综合训练题,共16页。试卷主要包含了下列说法正确的是,已知下列一组数,把式子去括号后正确的是,下列运算正确的是等内容,欢迎下载使用。