数学北京课改版第六章 整式的运算综合与测试同步测试题
展开
这是一份数学北京课改版第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了一同学做一道数学题,下列计算正确的是,下列运算正确的是,已知整数,下列各式运算的结果可以表示为等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子正确的是( )A. B.C. D.2、计算的结果是( )A. B. C. D.3、下列运算正确的是( )A.a3•a3=a9 B.a5÷a3=a2 C.(a3)2=a5 D.(a2b)3=a2b34、一同学做一道数学题:“已知两个多项式,,其中,求”,这位同学却把看成,求出的结果是,那么多项式是( )A. B.C. D.5、下列计算正确的是( )A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a76、下列运算正确的是( )A. B.C. D.7、已知整数、满足下列条件:=,=-,以此类推,则的值为( )A.-2018 B.-1010 C.-1009 D.-10088、下列各式中,能用平方差公式计算的是( )A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)C.(a+b)(a﹣d) D.(a+b)(2a﹣b)9、下列各式运算的结果可以表示为( )A. B.C. D.10、下列运算中正确的是( )A.b2•b3=b6 B.(2x+y)2=4x2+y2C.(﹣3x2y)3=﹣27x6y3 D.x+x=x2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,,则多项式的值为______.2、如图,用火柴棒摆“金鱼”,按照这样的规律,摆第n条“金鱼”需用火柴棒的根数为_____.
3、将同样大小的正方形按下列规律摆放,下面的图案中,在第n个图案中所有正方形的个数是_________个.(用含n的式子表示)4、对a,b,c,d定义一种新运算:,如,计算_________.5、若am=10,an=6,则am+n=_____.三、解答题(5小题,每小题10分,共计50分)1、如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c.(1)________,__________,________.(2)若将数轴在点O折叠,则点A落下的位置与点C的距离为_______;(3)点开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,t秒过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则_____,_____(t的整式表示)(4)在(3)的条件下,当AC=3AB时,求的值.2、化简.(1)2m﹣3n﹣5n﹣7m;(2)4(x2﹣xy+6)﹣3(2x2﹣xy).3、观察下面的变形规律:=;=;=……解答下面各题:(1)若n为正整数,请你猜想=_________;(2)求和:+++…+.4、观察下面三行数,回答问题:,4,,16,,64…1,7,,19,,67…2,5,,11,,35…(1)第①行数按什么规律排列,请用含n(n为正整数)的式子表示;(2)第②③行数与第①行数存在一定关系,计算这两行数的差(用含n的式子表示).5、先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y. ---------参考答案-----------一、单选题1、D【分析】根据去括号法则可直接进行排除选项.【详解】解:A、,原选项错误,故不符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项正确,故符合题意;故选D.【点睛】本题主要考查去括号,熟练掌握去括号法则是解题的关键.2、C【分析】根据同底数幂乘法的计算方法,即可得到答案.【详解】故选:C.【点睛】本题考查了同底数幂乘法的知识;解题的关键是熟练掌握同底数幂乘法的计算方法,从而完成求解.3、B【分析】直接利用积的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.【详解】解:A.a3•a3=a6,故此选项不合题意;B.a5÷a3=a2,故此选项符合题意;C.(a3)2=a6,故此选项不合题意;D.(a2b)3=a6b3,故此选项不合题意;故选:B.【点睛】此题主要考查了积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4、A【分析】由,,代入计算即可求出A的值.【详解】解:∵,由题意知:,则:A=,A=,=,故选:A【点睛】本题主要考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.5、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.【详解】解:A选项,原式=4a,故该选项符合题意;B选项,原式=b6,故该选项不符合题意;C选项,原式=a2,故该选项不符合题意;D选项,原式=a10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.6、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.7、B【分析】先根据有理数的加法和绝对值运算求出的值,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:,,,,,,归纳类推得:当为奇数时,;当为偶数时,,则,故选:B.【点睛】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.8、B【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.【详解】解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B.【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9、B【分析】分析对每个选项进行计算,再判断即可.【详解】A选项:,故A错误;B选项:,故B正确;C选项:,故C错误;D选项:,故D错误.故选B.【点睛】考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.10、C【分析】根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.【详解】解:A、b2•b3=b5,不符合题意;B、(2x+y)2=4x2+4xy+y2,不符合题意;C、(﹣3x2y)3=﹣27x6y3,符合题意;D、x+x=2x,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.二、填空题1、9【分析】多项式可变形为,然后整体代入即可求解.【详解】解:,∵,,∴原式,故答案为:9.【点睛】本题主要考查了代数式求值,解题关键是掌握整体思想,将代数式变形为已知式相关的形式求解.2、6n+2【分析】由题意可知:每增加一个金鱼就增加6根火柴棒,由此规律得出答案即可.【详解】解:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=6n+2.故答案为:6n+2.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.3、4n-1【分析】根据题意分析可得:第1个图案中正方形的个数4×1-1=3个,第2个图案中正方形的个数4×2-1=7个,…,根据找到的规律可求出第n个图案中所有正方形的个数.【详解】解:观察图案,发现:
第1个图案中,有4×1-1=3个正方形;
第2个图案中,有4×2-1=7个正方形;
第3个图案中,有4×3-1=11个正方形;
……
则第n个图案中正方形的个数是4n-1.故答案为:4n-1.【点睛】此题考查了整式的规律问题,解题的关键是正确分析题目中正方形的个数和序号的关系.4、【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【详解】解:.故答案为:.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.5、60【分析】逆用同底数幂乘法法则即可解题.【详解】解:am+n=am·an=106=60.故答案为:60.【点睛】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.三、解答题1、(1)-4,1,6;(2)2;(3);(4)5【解析】【分析】(1)根据多项式次数,单项式次数的定义,相反数的定义,最小的正整数的定义求解即可;(2)先求出点A落下的位置为数轴上表示4的点的位置,然后根据数轴上两点距离公式求解即可;(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,由此根据数轴上两点距离公式求解即可;(4)先求出,再由,得到,由此求解即可.【详解】解:(1)∵a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c,∴,,;故答案为:-4,1,6;(2)∵将数轴在点O折叠,∴点A落下的位置为数轴上表示4的点的位置,∵点C表示的数是6,∴点A落下的位置与点C的距离为6-4=2,故答案为:2;(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,∴,,故答案为:,;(4)由(3)可得,∵,∴,解得.【点睛】本题主要考查了整式的加减计算,用数轴表示有理数,数轴上两点的距离,解一元一次方程,单项式和多项式次数的定义等等,熟知相关知识是解题的关键.2、(1)﹣5m﹣8n;(2)﹣2x2﹣xy+24【解析】【分析】(1)合并同类项进行化简;(2)原式去括号,合并同类项进行化简.【详解】解:(1)原式=(2﹣7)m+(﹣3﹣5)n=﹣5m﹣8n;(2)原式=4x2﹣4xy+24﹣6x2+3xy=﹣2x2﹣xy+24.【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键.3、(1)(2)【解析】【分析】(1)根据变形规律写出减法算式即可.(2)把每一个乘法算式都裂项变成材料中的减法,再相互抵消达到简化计算的效果.【详解】(1)故答案为:(2)原式===【点睛】本题考查裂项相消法求式子的值,掌握相邻两个分数乘法转换成减法是本题关键.4、(1);(2)或【解析】【分析】(1)先确定符号,奇数为负,偶数为正,表示为,再确定数值,2=,4=,8=,把符号与数值组合即为答案;(2)第②行比第①行各数多3,第③行比第①行各数一半多3,计算即可.【详解】(1),4,,16,,64…奇数为负,偶数为正,符号可表示为,∵2=,4=,8=,…∴规律排是;(2)∵第②行比第①行各数多3,∴第②行的规律是+3;∵第③行是比第①行各数一半多3,∴第③行的规律是+3即+3;∴这两行的差为+3-(+3)或 +3-+3),整理,得或.【点睛】本题考查了有理数中的规律,学会从符号,底数,指数角度寻找与序号的关系是解题的关键.5、,0【解析】【分析】先计算完全平方公式、平方差公式、整式的乘法,再计算整式的加减法,然后将代入计算即可得.【详解】解:原式,,,将代入得:原式.【点睛】本题考查了整式的化简求值,熟练掌握乘法公式和运算法则是解题关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试巩固练习,共17页。试卷主要包含了下列说法不正确的是,下列说法正确的是,单项式的系数和次数分别是,用“※”定义一种新运算等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试精练,共17页。试卷主要包含了如果a﹣4b=0,那么多项式2,下列计算中,正确的是,下列说法正确的是,下列运算中正确的是,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试综合训练题,共17页。试卷主要包含了下列运算正确的是,下列计算正确的是,下列各式中,计算正确的是,下列结论中,正确的是,下列运算中,正确的是等内容,欢迎下载使用。