高中数学人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用学案及答案
展开
这是一份高中数学人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用学案及答案,共22页。学案主要包含了典例解析等内容,欢迎下载使用。
1.能通过具体实例说明一元线性回归模型修改的依据与方法.
2.通过对具体问题的进一步分析,能将某些非线性回归问题转化为线性回归问题并加以解决,提高数学运算能力.
3.能通过实例说明决定系数R2的意义和作用,提高数据分析能力。
重点难点
重点:决定系数R2的意义和作用
难点:某些非线性回归问题转化为线性回归问题
知识梳理
一元线性回归模型
用X表示父亲身高,Y表示儿子身高,e表示随机误差,假定随机误差e的均值为0,方差为与父亲身高无关的定值σ2,则它们之间的关系可以表示为Y=bx+a+e E(e)=0,D(e)=σ2, (1)
我们称(1)式为Y关于x的一元线性回归模型(simple linear regressin mdel).
其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差,模型中的Y也是随机变量,其值虽然不能由变量x的值确定,但是却能表示为bx+a与e的和(叠加),前一部分由x所确定,后一部分是随机的,如果e=0,那么Y与x之间的关系就可用一元线性函数模型来描述.
2. 经验回归方程
我们将 称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.
注意:
1、经验回归必过(x,y).;2、a,b,c都是估计值.;3 、b与r符号相同.
3. 残差分析.
我们称yi为响应变量Y的观测值,通过经验回归方程得到的yi为预测值.为了研究回归模型的有效性,定义残差为ei=yi-yi,残差是随机误差的估计值,通过对残差的分析可判断回归模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面的工作称为残差分析.
4.决定系数R2刻画回归效果.
R2越大,表示残差平方和越小,即模型的拟合效果越好
R2越小,表示残差平方和越大,即模型拟合效果越差.
学习过程
问题探究
通过前面的学习我们已经了解到,根据成对样本数据的散点图和样本相关系数,可以推断两个变量是否存在相关关系、是正相关还是负相关,以及线性相关程度的强弱等.
如果能像建立函数模型刻画两个变量之间的确定性关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,那么我们就可以利用这个模型研究两个变量之间的随机关系,并通过模型进行预测.
探究1:生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表所示.,
可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子身高和父亲身高线性相关.利用统计软件,求得样本相关系数为r≈0.886,表明儿子身高和父亲身高正线性相关,且相关程度较高
探究2. 根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以用函数模型刻画吗?
探究3:从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直线附近表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因素的存在,使儿子身高和父亲身高有关系但不是函数关系.那么影响儿子身高的其他因素是什么?
探究4:由探究3我们知道,正是因为存在这些随机的因素,使得儿子的身高呈现出随机性各种随机因素都是独立的,有些因素又无法量化.你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?
问题1. 你能结合父亲与儿子身高的实例,说明回归模型①的意义?
①
问题2.你能结合具体实例解释产生模型①中随机误差项的原因吗?
问题3:为了研究两个变量之间的相关关系,我们建立了一元线性回归模型达式
刻画的是变量Y与变量x之间的线性相关关
系,其中参数a和b未知,我们能否通过样本数据估计参数a和b?
问题4.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?
问题5:利用下表的数据,依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y关于父亲身高x的经验回归方程。
问题6:当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm吗?为什么?
例如,对于右表中的第6个观测,父亲身高为172cm,其儿子身高的观测值为y==176(cm),预测值为96=0.839×172+28.957=173.265(cm),残差为176-173.265=2.735(cm).类似地,可以得到其他的残差,如右表所示.
问题7:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?
残差图:作图时纵坐标 为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.
观察表可以看到,残差有正有负,残差的绝对值最大是4.413.观察残差的散点图可以发现,残差比较均匀地分布在横轴的两边,说明残差比较符合一元线性回归模型的假定,是均值为0、方差为σ2的随机变量的观测值.可见,通过观察残差图可以直观判新模型是否满足一元线性回归模型的假设.
一般地,建立经验回归方程后,通常需要对模型刻画数据的效果进行分析,借助残差分析还可以对模型进行改进,使我们能根据改进模型作出更符合实际的预测与决策。
概念解析
问题8:观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?
(2)
(3) (4)
二、典例解析
例1.经验表明,对于同一树种,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高.在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据如下表所示,试根据这些数据建立树高关于胸径的经验回归方程.
建立线性回归模型的基本步骤:
(1)确定研究对象,明确哪个变量是解释变量,哪个变量是响应变量.
(2)画出解释变量与响应变量的散点图,观察它们之间的关系 (如是否存在线性关系等).
(3)由经验确定回归方程的类型.
(4)按一定规则(如最小二乘法)估计经验回归方程中的参数.
(5)得出结果后需进行线性回归分析.
①残差平方和越小,模型的拟合效果越好.
②决定系数R2取值越大,说明模型的拟合效果越好.
需要注意的是:若题中给出了检验回归方程是否理想的条件,则根据题意进行分析检验即可.
例2.人们常将男子短跑100m的高水平运动员称为“百米飞人”.下表给出了1968年之前男子短跑100m世界纪录产生的年份和世界纪录的数据.试依据这些成对数据,建立男子短跑100m世界纪录关于纪录产生年份的经验回归方程。
仔细观察:从图中可以看到,经验回归方程较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?
思考:你能对模型进行修改,以使其更好地反映散点的分布特征吗?
对于通过创纪录时间预报世界纪录的问题,我们建立了两个回归模型,得到了两个回归方程,你能判断哪个回归方程拟合的精度更好吗?
(1).直接观察法.在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色).
①
②
(2).残差分析:残差平方和越小,模型拟合效果越好.
Q2明显小于Q1,说明非线性回归方程的拟合效果要优于线性回归方程.
(3).利用决定系数R2刻画回归效果.
①和②的R2分别为0.7325和0.9983说明非线性回归方程的拟合效果要优于线性回归方程。
(4)用新的观测数据来检验模型的拟合效果,事实上,我们还有1968年之后的男子短跑100m世界纪录数据,如表所示
在散点图中,绘制表中的散点(绿色),再添加经验回归方程①所对应的经验回归直线(红色),以及经验回归方程②所对应的经验回归曲线(蓝色),得到右图.显然绿色散点分布在蓝色经验回归曲线的附近,远离红色经验回归直线,表明经验回归方程②对于新数据的预报效果远远好于①.
思考:在上述问题情境中,男子短跑100m世界纪录和纪录创建年份之间呈现出对数关系,能借助于样本相关系数刻画这种关系的强弱吗?
问题探究
建立非线性经验回归模型的基本步骤:
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;
2.由经验确定非线性经验回归方程的模型;
3.通过变换,将非线性经验回归模型转化为线性经验回归模型;
4.按照公式计算经验回归方程中的参数,得到经验回归方程;
5.消去新元,得到非线性经验回归方程;
6.得出结果后分析残差图是否有异常 .
跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中:
经计算得:
线性回归残差的平方和:
i=16(yi−yi)2=236,64,e8.0605≈3167.
其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.
(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);
(2)若用非线性回归模型拟合,求得y关于x回归方程为
且相关指数R2=0.9522.
①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?
②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
附:相关系数
达标检测
1.在两个变量y与x的回归模型中,分别选择了四个不同的模型,且它们的R2的值的大小关系为Req \\al(2,模型3)
相关学案
这是一份高中数学8.2 一元线性回归模型及其应用优秀导学案,文件包含人教A版高中数学选择性必修第三册同步讲义第27讲82一元线性回归模型及其应用原卷版doc、人教A版高中数学选择性必修第三册同步讲义第27讲82一元线性回归模型及其应用含解析doc等2份学案配套教学资源,其中学案共0页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用优秀导学案,共12页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用学案,文件包含人教A版2019选择性必修三高中数学同步82一元线性回归模型及其应用解析版docx、人教A版2019选择性必修三高中数学同步82一元线性回归模型及其应用原卷版docx等2份学案配套教学资源,其中学案共28页, 欢迎下载使用。