北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,某教室9天的最高室温统计如下等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数B.方差C.平均数D.众数
2、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”
3、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2B.3C.4D.5
4、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )
A.36B.27
C.35.5D.31.5
5、下面调查中,最适合采用全面调查的是( )
A.对全国中学生视力状况的调查B.了解重庆市八年级学生身高情况
C.调查人们垃圾分类的意识D.对“天舟三号”货运飞船零部件的调查
6、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩B.2000
C.被抽取的50名学生的数学成绩D.50
7、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30B.30,30C.25,45D.60,45
8、下列说法中正确的是( )
A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式
B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本
C.为了了解全市中学生的睡眠情况,应该采用普查的方式
D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200
9、某教室9天的最高室温统计如下:
这组数据的中位数和众数分别是( )
A.31.5,33B.32.5,33C.33,32D.32,33
10、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.
2、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是______(精确到0.1),众数是______,中位数是______.
3、三种圆规的单价依次是15元、10元、8元,销售量占比分别为20%,50%,30%,则三种圆规的销售均价为__________元.
4、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.
5、数据92、96、98、100、x的众数是96,则其中位数和平均数分别是______和______.
三、解答题(5小题,每小题10分,共计50分)
1、2021年央视春晩,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:
(1)求本次接受调查的学生人数.
(2)求扇形统计图中D所在扇形的圆心角度数.
(3)将条形统计图补充完整.
2、2020年东京奥运会于2021年7月23日至8月8日举行,跳水比赛是大家最喜爱观看的项目之一,其计分规则如下:
a.每次试跳的动作,按照其完成难度的不同对应一个难度系数H;
b.每次试跳都有7名裁判进行打分(0~10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和2个最低分,剩下3个得分的平均值为这次试跳的完成分p;
c.运动员该次试跳的得分A=难度系数H×完成分p×3
在比赛中,某运动员一次试跳后的打分表为:
(1)7名裁判打分的众数是 ;中位数是 .
(2)该运动员本次试跳的得分是多少?
3、某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%,20%,40%的比例计入学期总评成绩.小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
4、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.
(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.
(2)请补充完整折线统计图;
(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.
5、为了了解某校学生的身高情况随机抽取该校男生,女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表.身高情况分组表(单位:cm)
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组.
(2)样本中,女生身高在E组的人数有 人.
(3)已知该校共有男生600人,女生480人,请估计身高在165≤x<175之间的学生约有多少.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
2、D
【解析】
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
4、D
【解析】
【分析】
根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.
【详解】
解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,
那么由中位数的定义可知,这组数据的中位数是.
故选D.
【点睛】
本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.
【详解】
解:.对全国中学生视力状况的调查,适合抽样调查,故本选项不合题意;
.了解重庆市八年级学生身高情况,适合抽样调查,故本选项不合题意;
.调查人们垃圾分类的意识,适合抽样调查,故本选项不合题意;
.对“天舟三号”货运飞船零部件的调查,适合普查,故本选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
7、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
8、D
【解析】
【分析】
根据全面调查、抽样调查、样本和样本容量判断即可.
【详解】
A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查
.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;
B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;
C、∵全市中学生人数太多
,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;
D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,
故D正确;
故选:D
【点睛】
本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.
9、D
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
一共有9个数据,其中位数是第5个数据,
由表可知,这组数据的中位数为32,
这组数据中数据33出现次数最多,
所以这组数据的众数为33,
故选:D.
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.
10、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、7
【解析】
【分析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10
中位数:(6+8)÷2=7
故答案为:7.
【点睛】
本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.
2、 73.0 80,90 80
【解析】
【分析】
根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.
【详解】
解:(1)平均数是:
=73.0;
(2)90分的有11人,80分的有11人,出现的次数最多,则众数是 80和90,
(3)把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;
故答案为;73.0;80和90;80.
【点睛】
此题考查了平均数、众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),出现次数最多的数是众数.
3、10.4
【解析】
【分析】
代入加权平均数公式计算即可.
【详解】
,故填10.4.
【点睛】
本题考查了加权平均数,熟悉加权平均数公式是解决本题的关键.
4、 15
【解析】
【分析】
根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.
【详解】
解:这些队员年龄的平均数=
这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,
∴中位数为15
【点睛】
本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.
5、 96 96.4
【解析】
【分析】
先根据众数的定义:一组数据中出现次数最多的数,求出x的值,然后求解平均数和中位数的定义进行求解即可.
【详解】
解:∵数据92、96、98、100、x的众数是96,
∴,
把这组数据从小到大排列为:92,96,96,98,100,
∴处在最中间的数是96,
∴中位数为96,
故答案为:96,96.4.
【点睛】
本题主要考查了平均数,中位数和众数,解题的关键在于能够熟练掌握相关定义;中位数的定义:一组数据中按照从小到大或从大到小顺序排列处在最中间的数或处在最中间的两个数的平均数;平均数的定义:一组数据的数据之和除以数据个数.
三、解答题
1、(1)50人;(2)36°;(3)见解析
【解析】
【分析】
(1)根据B的人数除以所占的百分比得到接受调查的学生人数;
(2)先求出D所占百分比,然后用360°×它所占百分比即可;
(3)先求出C所占百分比,再求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;
【详解】
解:(1)根据题意得:(人)
答:本次接受调查的人数是50人;
(2)D占的百分比,
D所在的扇形圆心角的度数为;
(3)C占的百分比为1-(20%+40%+10%)=30%,
C的人数为50×30%=15(人),即C中男生为15-8=7(人);
A的人数为50×20%=10(人),A中女生人数为10-6=4(人),
补全条形统计图,如图所示:
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2、(1)7.5,8.0;(2)该运动员本次试跳得分为84分.
【解析】
【分析】
(1)根据众数(一组数据中心出现次数最多的数据叫做众数)、中位数(一组数据按照从小到大的顺序排列,找出最中间的一个数或最中间两个数的平均数)的定义即可得;
(2)根据运动员试跳得分公式列出算式计算即可.
【详解】
解:(1)7.5出现的次数最多,7名裁判打分的众数是7.5;
将这组数据按照从小到大的顺序排列得:7.5、7.5、7.5、8.0、8.5、8.5、9.0,根据中位数的定义可得,中位数为8.0;
故答案为:7.5,8.0;
(2)根据试跳得分公式可得:
(分),
故该运动员本次试跳得分为84分.
【点睛】
题目主要考查平均数、众数和中位数的定义,理解三个定义及题意中公式是解题关键.
3、88.4分
【解析】
【分析】
小亮这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.
【详解】
解:根据题意,小亮这学期总评成绩为:
(分).
答:小亮这学期总评成绩为88.4分.
【点睛】
本题考查了加权平均数的计算,根据加权平均数的计算公式解答是解题关键.
4、(1)60%;(2)补全图形见解析;(3)7.
【解析】
【分析】
(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.
(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.
(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.
【详解】
(1)根据统计图可知嘉嘉射箭不低于9环的有3次,
故嘉嘉射箭成绩的优秀率为.
(2)嘉嘉的平均成绩为环
设淇淇最后一次成绩为m,
∴淇淇的平均成绩为
由题意可知,即,
解得:m=8.
故淇淇最后一次成绩为8,
由此,补全折线统计图如下:
(3)淇淇射击5次中8环出现了3次,
∴a=8,
∴嘉嘉六次射箭成绩的中位数是8环,
嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.
∵,
∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.
故b的最大值为7.
【点睛】
本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.
5、(1)B,C;(2)2;(3)462人.
【解析】
【分析】
(1)根据众数出现次数最多,以及中位数为排列后中间的数据或中间两个数的平均数解答即可;
(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;
(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为:B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为:2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.
排名
1
2
3
4
5
6
7
8
9
10
代表团
山东
广东
浙江
江苏
上海
湖北
福建
湖南
四川
辽宁
金牌数
最高室温(℃)
30
31
32
33
天数
1
2
2
4
难度系数
裁判
1#
2#
3#
4#
5#
6#
7#
3.5
打分
7.5
8.5
7.5
9.0
7.5
8.5
8.0
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共17页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试综合训练题,共18页。试卷主要包含了下列问题不适合用全面调查的是,下列调查适合作抽样调查的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题,共21页。试卷主要包含了数据,,,,,的众数是,下列说法中正确的是等内容,欢迎下载使用。