数学七年级下册第九章 数据的收集与表示综合与测试同步练习题
展开这是一份数学七年级下册第九章 数据的收集与表示综合与测试同步练习题,共18页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据中的中位数( )
A.只有1个 B.有2个 C.没有 D.不确定
2、5G是新一代信息技术的发展方向和数字经济的重要基础,预计我国5G商用将直接创造更多的就业岗位.小明准备到一家公司应聘普通员,他了解到该公司全体员工的月收入如下:
月收入/元 | 45000 | 19000 | 10000 | 5000 | 4500 | 3000 | 2000 |
人数 | 1 | 2 | 3 | 6 | 1 | 11 | 1 |
对这家公司全体员工的月收入,能为小明提供更为有用的信息的统计量是( )A.平均数 B.众数 C.中位数 D.方差
3、数据2,5,5,7,x,3的平均数是4,则中位数是( )
A.6 B.5 C.4.5 D.4
4、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
项目人数 级别 | 三好学生 | 优秀学生干部 | 优秀团员 |
市级 | 1 | 1 | 1 |
区级 | 3 | 2 | 2 |
校级 | 17 | 5 | 12 |
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
5、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数 B.方差 C.平均数 D.众数
6、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
7、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
8、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
9、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的( )
A.平均数 B.加权平均数 C.众数 D.中位数
10、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差 B.众数 C.平均数 D.中位数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据:4,2,3,x,1,4,3有唯一的众数4,则这组数据的平均数是___________.
2、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:
| 鱼的条数 | 平均每条鱼的质量 |
第一次捕捞 | 20 | |
第二次捕捞 | 10 | |
第三次捕捞 | 10 |
那么,鱼塘中鲢鱼的总质量约是________kg.
3、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.
4、某次测试中,小颖语文,数学两科分数共计176分,如果再加上英语分数,三科的平均分就比语文和数学的两科平均分多3分,则小颖的英语成绩是______分.
5、下列调查中,用全面调查方式收集数据的有________.
①为了了解学生对任课教师的意见,学校要求全体学生网上匿名评价教师;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;
③某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;
④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.
三、解答题(5小题,每小题10分,共计50分)
1、为了了解秦兵马俑的身高状况.某考古队随机调查了36尊秦兵马俑,它们的高度(单住:cm)如下:172,178,181,184,184,187,187,190,190,175,181,181,184,184,187,187,190,193,178,181,181,184,187,187,187,190,193,178,181,184,184,187,187,190,190,196
(1)这36尊秦兵马俑高度的平均数、中位数和众数分别是多少?
(2)你能据此估计出秦兵马俑的平均高度吗?
2、某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:
信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).
信息二:第三组的成绩(单位:分)为:
76 76 76 73 72 75 74 71 73 74 78 76
根据信息解答下列问题:
(1)补全第二组频数分布直方图(直接在图中补全);
(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;
(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数.
3、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙三名应聘者进行了初步测试,测试成绩如下表:
| 甲 | 乙 | 丙 |
学历 | 7 | 9 | 8 |
经验 | 8 | 7 | 7 |
工作态度 | 6 | 8 | 5 |
如果将学历、经验和工作态度三项得分按的比例确定各人的最终得分,并以此为依据确定录用者,那么谁将被录用?
4、随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9
(1)这组数据的中位数是____,众数是____;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有2000位居民,试估计该小区居民一周内使用共享单车的总次数.
5、小明和小亮家去年的饮食、教育和其他支出都分别是18000元、6000元、36000元,小明家今年这三项支出依次比去年增长了10%,20%,30%,小亮家今年的这三项支出依次比去年增长了20%,30%,10%,小明和小亮家今年的总支出比去年增长的百分数相等吗?它们分别是多少?
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:一组数据中的中位数只有一个;
故选A.
【点睛】
本题主要考查中位数,熟练掌握中位数的求法是解题的关键.
2、B
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然小明想了解到该公司全体员工的月收入,那么应该是看多数员工的工资情况,故值得关注的是众数.
【详解】
解:由于众数是数据中出现次数最多的数,故小明应最关心这组数据中的众数.
故选:B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
3、D
【解析】
【分析】
先计算出x的值,再根据中位数的定义解答.
【详解】
解:∵2,5,5,7,x,3的平均数是4,
∴,
∴x=2,
数据有小到大排列为2,2,3,5,5,7,
∴中位数是,
故选:D.
【点睛】
此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.
4、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
5、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
6、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
7、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
8、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
9、D
【解析】
【分析】
根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.
【详解】
解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.
故选:D.
【点睛】
本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.
10、D
【解析】
【分析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,
所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选:D.
【点睛】
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
二、填空题
1、3
【解析】
【分析】
根据众数的意义求出x的值,再根据平均数的计算方法进行计算即可.
【详解】
解:这组数据:4,2,3,x,1,4,3.有唯一的众数4,
所以x=4,
因此这组数据的平均数为,
故答案为:3.
【点睛】
本题考查众数、平均数,理解众数、平均数的意义,掌握众数、平均数的计算方法是正确解答的关键.
2、3600
【解析】
【分析】
首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.
【详解】
解:每条鱼的平均重量为:千克,
成活的鱼的总数为:条,
则总质量约是千克.
故答案为:3600.
【点睛】
本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量总条数,能够根据样本估算总体.
3、5.25
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:6,4,10的权数分别是2,5,1,
∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.
故答案为5.25.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
4、97
【解析】
【分析】
先求出三科的平均分,根据平均数的含义求出三科的总分,减去语文,数学两科分数即可求解.
【详解】
解:(176÷2+3)×3-176
=(88+3)×3-176
=91×3-176
=273-176
=97(分).
答:小明的外语成绩是97分.
故答案为:97.
【点睛】
本题考查了平均数的含义,本题的难点是求出三科的平均分和三科的总分.
5、①③
【解析】
【分析】
根据抽样调查和全面调查的特点依次分析各项即可判断.
【详解】
解:①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查,属于全面调查;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查,属于抽样调查;
③某班学生拟组织一次春游活动,为了确定春游的地点,向同学进行调查,属于全面调查;
④了解全班同学的作业完成情况,对学号为奇数的学生进行调查,属于抽样调查;
故答案为:①③
【点睛】
本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识.
三、解答题
1、(1)这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;(2)一般而言,可以估计秦兵马俑的平均高度为185cm左右
【解析】
【分析】
(1)根据加权平均数的定义求解平均数;把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于最中间的两个数的平均数就是此组数据的中位数;这些数据中出现次数最多的那个数就是此组数据的众数;
(2)根据平均数回答即可.
【详解】
解:(1)(172+175+178×3+181×6+184×7+187×9+190×6+193×2+196)÷36
=6660÷36
=185(cm),
∴平均数为185cm;
从小到大的顺序排列为:172,175,178,178,178,181,181,181,181,181,181,184,184,184,184,184,184,184,187,187,187,187,187,187,187,187,187,190,190,190,190,190,190,193,193,196,
∴中位数为:(184+187)÷2=185.5(cm);
∵此组数据中出现次数最多的是187,
∴所以此组数据众数是187(cm),
答:这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;
(2)∵这36尊兵马俑高度的平均数是185cm,
∴一般而言,可以估计秦兵马俑的平均高度为185cm左右.
【点睛】
此题主要考查了求平均数、中位数、众数的方法的运用,熟练掌握平均数、中位数和众数的定义是解题的关键.
2、(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人.
【解析】
【分析】
(1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;
(2)根据众数和中位数的定义求解即可;
(3)样本估计总体,样本中不低于80分的占 ,进而估计1500名学生中不低于80分的人数.
【详解】
(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如下:
(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,
将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为 =77(分),因此中位数是77分,
故答案为:76,77;
(3)2000×=960(人),
答:该校2000名学生中成绩不低于80分的大约960人.
【点睛】
本题考查了条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
3、甲7分,乙7.8分,丙6.4分,乙将被录用
【解析】
【分析】
按学历、经验和工作态度三项的比例得出每个人的成绩,比较后得出结果.
【详解】
解:甲的综合成绩为:分;
乙的综合成绩为:分;
丙的综合成绩为:分;
∴应该录用乙.
【点睛】
本题考查了加权平均数,熟知加权平均数的一半计算方法以及根据加权平均数作决策是解本题的关键.
4、(1)16;17;(2)14次;(3)28000次
【解析】
【分析】
(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【详解】
解:(1)按照从小到大的顺序新排列后,第5、第6个数分别是15和17,
所以中位数是(15+17)÷2=16,
因为17出现了3次,出现的次数最多,
所以众数是17,
故答案是16,17;
(2)根据题意得:
×(0+7+9+12+15+17×3+20+26)=14(次),
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)根据题意得:
2000×14=28000(次)
答:该小区居民一周内使用共享单车的总次数为28000次.
【点睛】
本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
5、小明家23%;小亮家15%
【解析】
【分析】
由题意直接根据增长率=今年的增加的支出÷去年的支出总数列式进行计算即可判断.
【详解】
解:小明家今年的总支出比去年增长的百分数为:
;
小亮家今年的总支出比去年增长的百分数为:
.
答:小明和小亮家今年的总支出比去年增长的百分数不相等,分别为小明家23%,小亮家15%.
【点睛】
本题考查数据的分析-增长率的计算.解题时要看准支出项目与增长的百分数之间的关系.
相关试卷
这是一份初中数学第九章 数据的收集与表示综合与测试课时练习,共17页。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共18页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共18页。试卷主要包含了为了解学生参加体育锻炼的情况,有一组数据等内容,欢迎下载使用。