数学七年级下册第九章 数据的收集与表示综合与测试复习练习题
展开这是一份数学七年级下册第九章 数据的收集与表示综合与测试复习练习题,共18页。试卷主要包含了一组数据中的中位数,下列问题不适合用全面调查的是,下列说法中等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )
A.6B.5C.4D.3
2、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89B.90C.91D.92
3、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
4、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
A.8B.13C.14D.15
5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )
A.最高分B.中位数C.极差D.平均分
6、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项B.4项C.5项D.6项
7、一组数据中的中位数( )
A.只有1个B.有2个C.没有D.不确定
8、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间D.调查市场上某种食品的色素含量是否符合国家标准
9、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个B.2个C.3个D.4个
10、下列说法中正确的是( )
A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式
B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本
C.为了了解全市中学生的睡眠情况,应该采用普查的方式
D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为__.
2、若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则_______叫做这n个数的加权平均数.
3、现有一组数据2,6,5,10,8,则这组数据的中位数是 ___.
4、在调查中,考察全体对象的调查叫做________,________是指从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况;要考察的全体对象称为________,其中的每一个考察对象称为________,被抽取的那些考察对象组成一个________,其数目称为________.
5、三种圆规的单价依次是15元、10元、8元,销售量占比分别为20%,50%,30%,则三种圆规的销售均价为__________元.
三、解答题(5小题,每小题10分,共计50分)
1、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:
20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.
抽取的20名男生的测试成绩扇形统计图如下:
其中,抽取的20名男生的测试成绩中,组的成绩如下:47,48,48,47,48,48.
抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:
(1)根据以上信息可以求出:______,______,______;
(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);
(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.
2、智能手机等高科技产品正越来越严重地伤害青少年的眼睛,保护视力,刻不容缓.某中学为了解学生的视力状况,培养学生保护视力的意识,对八年级部分学生做了一次主题为“保护视力永康降度”的调查活动,根据近视程度的不同将学生分为A、B、C、D、E五类,其中A表示视力良好、B表示轻度近视(300度以下)、C表示中度近视(300度~600度)、D表示高度近视(600度~900度)、E表示超高度近视(900度以上).学校根据调查情况进行了统计,并绘制了如下两幅不完整的统计图:
请你结合图中信息,解答下列问题:
(1)参与本次调查活动的学生有 人,
(2)求出C与E的人数,并补全条形统计图;
(3)求出超高度近视在扇形图中所对应的圆心角的度数.
3、已知一组数据:0,1,,6,,4.其唯一众数为4,求这组数据的中位数.
4、14,5,10,3,6的中位数是什么?
5、某单位要招聘1名英语翻译,甲、乙两人报名参加了4项素质测试,成绩如下(单位:分):
如果把听、说、读、写的成绩按3:3:2:2计算素质测试平均成绩,那么谁的平均成绩高?请说明理由.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7−4−4−5−6−6−7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
2、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
3、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
5、B
【解析】
【分析】
由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.
【详解】
解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选:B.
【点睛】
本题考查了中位数意义,解题的关键是正确掌握中位数的意义.
6、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
7、A
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:一组数据中的中位数只有一个;
故选A.
【点睛】
本题主要考查中位数,熟练掌握中位数的求法是解题的关键.
8、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
9、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
10、D
【解析】
【分析】
根据全面调查、抽样调查、样本和样本容量判断即可.
【详解】
A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查
.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;
B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;
C、∵全市中学生人数太多
,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;
D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,
故D正确;
故选:D
【点睛】
本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.
二、填空题
1、72°
【解析】
【分析】
先算出总人数,再用足球人数占总人数的百分比乘即可得.
【详解】
解:总人数是:20÷40%=50(人),
∵足球的人数为10人,
∴“足球”项目扇形的圆心角的度数为:360°×=72°;
故答案为:72°.
【点睛】
本题考查了扇形统计图,解题的关键的是求出总人数.
2、
【解析】
【分析】
根据加权平均数的计算方法求解即可得.
【详解】
解:根据题意可得:
加权平均数为:,
故答案为:.
【点睛】
题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.
3、6
【解析】
【分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:从小到大排列此数据为:2,5,6,8,10,处在最中间的数为6,
故中位数是6.
故答案为:6.
【点睛】
本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).
4、 全面调查 抽样调查 总体 个体 样本 样本容量
【解析】
【分析】
依据全面调查,抽样调查,总体,个体,样本,样本容量的定义直接解答即可
【详解】
解:在调查中,考察全体对象的调查叫做全面调查,从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查叫抽样调查,要考察的全体对象称为总体,其中的每一个考察对象称为个体,被抽取的那些考察对象组成一个样本,其数目称为样本容量;
故答案为:全面调查,抽样调查,总体,个体,样本,样本容量;
【点睛】
本题主要考查了全面调查,抽样调查及相关概念,熟练掌握有关概念是解答本题的关键.
5、10.4
【解析】
【分析】
代入加权平均数公式计算即可.
【详解】
,故填10.4.
【点睛】
本题考查了加权平均数,熟悉加权平均数公式是解决本题的关键.
三、解答题
1、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.
【解析】
【分析】
(1)由扇形统计图,可求出a的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;
(2)通过比较平均数、中位数、众数的大小即可解答;
(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.
【详解】
解:(1)1-5%-5%-45%-30%=15%,
由扇形统计图中,可知,男生成绩的中位数位于D组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,
女生成绩出现次数最多的是50,因此众数是50,
故答案为:15,48,50;
(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.
(3)(人)
(人)
答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.
【点睛】
本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.
2、(1)600;(2)150,12,补全条形统计图见解析;(3)
【解析】
【分析】
(1)根据条形统计图和扇形统计图由B类别的人数和所占比即可求出总人数;
(2)用总人数乘以C类别的所占比即可得出C类别的人数,用总人数减去A、B、C、D的人数即可得出E类别人数,补全条形统计图即可;
(3)求出E类别的所占比,再乘以即可得出答案.
【详解】
(1)由题可知:参与本次调查活动的学生有(人),
故答案为:600;
(2)C类别的人数为(人),
E类别的人数为(人),
补全条形统计图如下:
(3)超高度近视在扇形图中所对应的圆心角的度数为.
【点睛】
本题考查统计知识,根据条形统计图与扇形统计图所给出的条件求解是解题的关键.
3、2.5
【解析】
【分析】
根据这组数据中的众数为4,求得,再求解中位数即可.
【详解】
解:因为这组数据:0,1,,6,,4.唯一的众数为4,所以,
将这组数据从小到大排列得,0,1,4,4,6,最中间的数是1,4,
所以这组数据的中位数是.
【点睛】
此题考查了众数和中位数,解题的关键是根据众数求得参数的值,掌握中位数的求解方法.
4、6
【解析】
【分析】
把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.
【详解】
解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,
答:14,5,10,3,6的中位数是6.
【点睛】
本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、甲的平均成绩高,见解析
【解析】
【分析】
根据加权平均数的定义列式计算即可求解.
【详解】
解:甲的平均成绩高,
∵甲的平均成绩:90×3+80×3+85×2+78×23+3+2+2=83.6(分),
乙的平均成绩:78×3+82×3+85×2+88×23+3+2+2=82.6(分),
83.6>82.6,
∴甲的平均成绩高.
【点睛】
本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.
项目人数
级别
三好学生
优秀学生干部
优秀团员
市级
1
1
1
区级
3
2
2
校级
17
5
12
抽取的20名男生成绩得分用表示,共分成五组:
:;
:;
:;
:;
:.
性别
平均数
中位数
众数
女生
47.5
48.5
男生
47.5
49
听
说
读
写
甲
90
80
85
78
乙
78
82
85
88
相关试卷
这是一份2020-2021学年第九章 数据的收集与表示综合与测试测试题,共18页。试卷主要包含了山西被誉为“表里山河”,意思是,已知一组数据,一组数据x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共17页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试巩固练习,共20页。试卷主要包含了下列调查中,最适合全面调查,山西被誉为“表里山河”,意思是等内容,欢迎下载使用。