初中数学北京课改版七年级下册第六章 整式的运算综合与测试单元测试测试题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试单元测试测试题,共17页。试卷主要包含了如果a﹣4b=0,那么多项式2,已知,下列各式中,计算结果为的是,下列计算正确的有,下列运算中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )A.左侧1010厘米 B.右侧1010厘米C.左侧1011厘米 D.右侧1011厘米2、下列运算正确的是( )A. B.C. D.3、如图所示,有一些点组成的三角形的图形,每条“边”(包括两个顶点)有n()个点,每个图形总的点数可以表示为s,当时,s的值是( )A.36 B.33 C.30 D.274、如果a﹣4b=0,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是( )A.﹣1 B.﹣2 C.1 D.25、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.66、下列各式中,计算结果为的是( )A. B.C. D.7、下列计算正确的有( )① ② ③ ④A.3个 B.2个 C.1个 D.0个8、已知,m,n均为正整数,则的值为( ).A. B. C. D.9、下列运算中正确的是( )A.b2•b3=b6 B.(2x+y)2=4x2+y2C.(﹣3x2y)3=﹣27x6y3 D.x+x=x210、对代数式-(a-b)进行去括号运算,结果正确的是( )A.a-b B.-a-b C.a+b D.–a+b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列三行数,并完成填空:①﹣2,4,﹣8,16,﹣32,64,…②1,﹣2,4,﹣8,16,﹣32,…③0,﹣3,3,﹣9,15,﹣33,…第①行数按一定规律排列,第2022个数是_____;若取每行数的第2022个数,计算这三个数的和为_____.2、观察下面一列数,按某种规律在横线上填上适当的数:1,,,,____,_____,则第n个数为_____.3、单项式﹣xy2的系数为 _____.4、一个白色圆生成一个黑色圆,一个黑色圆生成一个白色圆和一个黑色圆,按如图方式排列,依此类推,第十行圆的个数为 _____.5、单项式的系数是_______.三、解答题(5小题,每小题10分,共计50分)1、将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1= ,S2= ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是 ;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.2、已知A=,B=,(1)求A﹣2B;(2)若A-2B的值与的取值无关,求的值.3、先化简后求值:,其中,.4、先化简,再求值:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2),其中x=﹣2,y=.5、先化简,再求值:,其中,. ---------参考答案-----------一、单选题1、D【分析】由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.【详解】解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 所以每两次移动的结果是往右移动了1个单位长度, 所以移动第2022次到达点B,则对应的数为: 所以点B在点A点的右侧1011厘米处.故选D【点睛】本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.2、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. ,故该选项错误, B. ,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.3、C【分析】当时,,当时,,当时,,当时,,可以推出当时,,由此求解即可.【详解】解:当时,,当时,,当时,,当时,,∴当时,,∴当时,,故选C.【点睛】本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.4、A【分析】利用整式的加减计算法则和去括号法则化简,由此求解即可.【详解】解:∵,∴,故选A.【点睛】本题主要考查了整式的加减--化简求值,去括号,熟知相关计算法则是解题的关键.5、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.6、B【分析】根据幂的运算法则即可求解.【详解】A. =,故错误; B. =,正确;C. 不能计算,故错误; D. =,故错误;故选B.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.7、B【分析】括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.【详解】解:,所以正确,符合题意;,所以错误,不符合题意;,所以错误,不符合题意; ,所以正确,符合题意.故选B.【点睛】本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.8、C【分析】根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.【详解】解:∵∴故选C【点睛】本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.9、C【分析】根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.【详解】解:A、b2•b3=b5,不符合题意;B、(2x+y)2=4x2+4xy+y2,不符合题意;C、(﹣3x2y)3=﹣27x6y3,符合题意;D、x+x=2x,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.10、D【分析】根据去括号法则进行计算即可.【详解】解:代数式-(a-b)进行去括号运算,结果是–a+b.故选:D【点睛】本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.二、填空题1、22022 -1 【分析】利用数字的排列规律得到第①行数的第n个数字为(-2)n,第②行数的第n个数字为(-2)n-1,第③行数的第n个数字为(-2)n-1-1(n为正整数),然后根据规律求解.【详解】解:∵-2,4,-8,16,﹣32,64,…,∴第①行各数是:(-2)1,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…,∴第①行第n个数是(-2)n,∴第2022个数是22022;∵第②行数是第①行对应数的-倍,∴第②行第n个数是-×(-2)n=(-2)n-1;∵第③行数比第②行对应数少1,第③行第n个数是 (-2)n-1-1;∴22022+(-2)2022-1+(-2)2022-1-1=22022+(-2)2021+(-2)2021-1=22022-22022-1=-1.故答案是:22022;1.【点睛】本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.2、 【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.【详解】解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.故答案是:,,【点睛】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.3、【分析】根据单项式的系数的定义即可求解.【详解】单项式﹣xy2的系数为故答案为:.【点睛】此题主要考查单项式的系数,解题的关键是熟知单项式的系数的定义:指单项式中字母前面的数.4、55【分析】根据第一行有1个圆,第二行有1个圆,第三行有1+1=2个圆,第四行有1+2=3个圆,第五行有2+3=5个圆,第六行有3+5=8个圆,可知从第三行起,第n行圆的个数是第n-2行和第n-1行圆的个数和,由此求解即可.【详解】解:由题意得:第一行有1个圆,第二行有1个圆,第三行有1+1=2个圆,第四行有1+2=3个圆,第五行有2+3=5个圆,第六行有3+5=8个圆,∴第七行有5+8=13个圆,∴第八行有8+13=21个圆,第九行有13+21=34个圆,第10行有21+34=55个圆,故答案为:55.【点睛】本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.5、【分析】单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数.【详解】解:中为数字因式即为单项式的系数故答案为:.【点睛】本题考察了单项式的系数.解题的关键在于区分单项式中的数字因式与字母因式.三、解答题1、(1);(2);(3)1.【解析】【分析】(1)根据图形以及正方形和长方形的面积计算公式即可解答;(2)由(1)中所得的S₁和S₂的面积相等即可解答;(3)根据(2)中的公式,将2020×2022写成(2021-1)×(2021+1),然后按照平方差公式进行化简,再按照有理数的混合运算计算出即可.【详解】解:(1)根据图形以及正方形和长方形的面积计算公式可得:S₁=a2﹣b2,S₂=(a+b)(a﹣b)故答案是:a2﹣b2,(a+b)(a﹣b);(2)由(1)所得结论和面积相等,则可以验证的乘法公式是a2﹣b2=(a+b)(a﹣b).故答案是:(a+b)(a﹣b)=a2﹣b2.(3)运用(2)所得的结论可得:20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1.【点睛】本题考查了平方差公式的几何背景及其在简算中的应用,灵活利用数形结合思想以及掌握平方差公式的形式是解答本题的关键.2、(1);(2)【解析】【分析】(1)将A、B的值代入A﹣2B化简即可.(2)与a的取值无关,即a的系数为零.【详解】解:(1)A-2B=去括号得A-2B =化简得A-2B=(2)A-2B =∵A-2B的值与a的取值无关∴∴【点睛】本题考查了整式的加减以及整式加减中无关型的问题,这类题需要将整式进行整理化简,化成关于某个未知量的降幂或升幂的形式后,令题中不含某次项的系数为零即可.3、,10【解析】【分析】由题意先根据整式的加减运算法则进行化简,进而,代入原式即可求值.【详解】解:当,时,原式.【点睛】本题考查整式的加减,熟练掌握整式的加减运算法则是解题的关键.4、x2,4【解析】【分析】原式去括号,合并同类项进行化简,然后再代入求值.【详解】解:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2)=3x2﹣xy+2y2﹣2x2+xy﹣2y2=x2,把x=﹣2代入得,原式=(﹣2)2=4.【点睛】本题主要考查整式的化简,关键是要牢记去括号的法则和合并同类项的法则.5、,【解析】【分析】根据整式的加减运算法则先化简再求值即可.【详解】解:.当,时,原式.【点睛】本题考查整式的加减运算,熟练掌握该知识点是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算不正确的是,下列等式成立的是,下列去括号正确的是.,下列运算正确的是,已知下列一组数等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共17页。试卷主要包含了下列说法正确的是,下列式子,观察下列各式,下列各式中,计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时练习,共16页。试卷主要包含了多项式的次数和常数项分别是,下列运算正确的是,下列运算中,正确的是等内容,欢迎下载使用。