初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共16页。试卷主要包含了下列计算正确的是,单项式的系数和次数分别是,有理数a,下面说法正确的是,下列计算中,结果正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B.
C. D.
2、下列运算正确的是( )
A.a3•a3=a9 B.a5÷a3=a2 C.(a3)2=a5 D.(a2b)3=a2b3
3、关于单项式﹣,下列说法中正确的是( )
A.系数是﹣ B.次数是4 C.系数是﹣ D.次数是5
4、下列计算正确的是( )
A.3(x﹣1)=3x﹣1 B.x2+x2=2x4
C.x+2y=3xy D.﹣0.8ab+ab=0
5、单项式的系数和次数分别是( )
A.-2,5 B.,5 C.,2 D.,2
6、有理数a、b在数轴上的位置如图所示,则|a|﹣|a+b|﹣|b﹣a|化简后得( )
A.2b+a B.2b﹣a C.a D.b
7、下面说法正确的是( )
A.倒数等于它本身的数是1
B.是最大的负整数
C.单项式的系数是,次数是2
D.与是同类项
8、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.572
9、下列计算中,结果正确的是( )
A.
B.
C.
D.
10、下列说法正确的是( )
A.0不是单项式 B.单项式xy的次数是1
C.单项式的系数是 D.多项式的一次项次数是—1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、单项式的系数是_______.
2、将边长为的正方形沿虚线剪成两个正方形和两个长方形,若去掉边长为的小长方形后,再将剩下的三块拼成一个长方形,则这个长方形的周长为__________.
3、在2022年迎新联欢会上,数学老师和同学们做了一个游戏.她在,,三个盘子里分别放了一些小球,小球数依次为,,,记为.游戏规则如下:三个盘子中的小球数,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记为一次操作;次操作后的小球数记为.若,则______,______.
4、a是不为1的有理数,我们把称为a的和谐数.已知,a2是a1的和谐数,a3是a2的和谐数,a4是a3的和谐数,……,依此类推.
(1)a3=_____;
(2)a2021=_____.
5、减去等于的多项式是______.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中,.
2、已知:有理数、满足,求整式的值.
3、先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y.
4、按照要求进行计算:
(1)计算:
(2)利用乘法公式进行计算:
5、化简:.
---------参考答案-----------
一、单选题
1、C
【分析】
根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.
【详解】
解:A. ,故该选项错误,
B. ,故该选项错误,
C. ,故该选项正确,
D. ,故该选项错误,
故选C.
【点睛】
本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.
2、B
【分析】
直接利用积的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.
【详解】
解:A.a3•a3=a6,故此选项不合题意;
B.a5÷a3=a2,故此选项符合题意;
C.(a3)2=a6,故此选项不合题意;
D.(a2b)3=a6b3,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
3、C
【分析】
根据单项式的基本性质:单项式的次数(单项式中所以字母的指数的和)、系数(单项式中的数字因式)的定义解答即可.
【详解】
解:单项式的系数是,次数是.
故选:C.
【点睛】
本题考查了单项式的次数和系数,深刻理解单项式的次数和系数的定义是解题关键.
4、D
【分析】
根据去括号和合并同类项的法则逐一判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、计算错误,不符合题意;
C、与不是同类项,不能合并,不符合题意;
D、,计算正确,符合题意;
故选D.
【点睛】
本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.
5、B
【分析】
根据单项式系数及次数定义解答.
【详解】
解:单项式的系数和次数分别是,2+1+2=5,
故选:B.
【点睛】
此题考查了单项式的次数及系数的定义,熟记定义是解题的关键.
6、C
【分析】
根据图判断a,a+b,b-a的符号,根据绝对值,合并同类项法则化简即可求解.
【详解】
解:∵a<0<b,且>,
∴a<0,a+b<0,b-a>0,
∴|a|-|a+b|-| b-a |
=-a+a+b-(b-a)
=-a+a+b-b+a
=a,
故选:C.
【点睛】
本题考查了整式的加减,利用绝对值的意义,合并同类项的法则,解题关键是利用数轴判断绝对值内式子的符号.
7、B
【分析】
选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:.倒数等于它本身的数是,故本选项不合题意;
.是最大的负整数,正确,故本选项符合题意;
.单项式的系数是,次数是3,故本选项不合题意;
.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;
故选:.
【点睛】
本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.
8、D
【分析】
由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.
【详解】
解:第一个图形中有:个正方形;
第二个图形中有:个正方形,
第三个图形有:个正方形,
∴可以推出第n个图形有,
∴第 11 个图形中正方形的个数是
个正方形,
故选D.
【点睛】
本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.
9、D
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.
【详解】
解:不是同类项,故A不符合题意;
故B不符合题意;
不是同类项,故C不符合题意;
故D符合题意;
故选D
【点睛】
本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.
10、C
【分析】
根据单项式的判断,单项式的系数与次数,多项式的次数、项数等概念逐项分析判断即可
【详解】
解:A. 0是单项式,故该选项不正确,不符合题意;
B. 单项式xy的次数是2,故该选项不正确,不符合题意;
C. 单项式的系数是,故该选项正确,符合题意;
D. 多项式的一次项次数是2,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了单项式的判断,单项式的系数与次数,多项式的次数、项数等概念,掌握以上知识是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0,应为有理数, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.
二、填空题
1、
【分析】
单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数.
【详解】
解:中为数字因式
即为单项式的系数
故答案为:.
【点睛】
本题考察了单项式的系数.解题的关键在于区分单项式中的数字因式与字母因式.
2、12a
【分析】
根据题意和矩形的性质列出代数式解答即可.
【详解】
解:新长方形的周长=2[(3a+2b)+(3a-2b)]=12a
故答案为:12a
【点睛】
本题考查了正方形和长方形的边长之间的关系,学生可以通过操作进行解决问题.
3、(6,8,13) (9,8,10)
【分析】
根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.
【详解】
解:∵G0=(3,5,19),
∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),
G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),
G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),
……
∴从G5开始每3次为一个周期循环,
∵(2022−4)÷3=672……2,
∴G2022=G6=(9,8,10),
故答案为:(6,8,13),(9,8,10).
【点睛】
本题考查了有理数混合运算与数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.
4、
【分析】
(1)从开始,分别求出a2= ,a3= 即可;
(2)求出a4=﹣ ,发现规律每3个数循环一次,可知a2021=a2=.
【详解】
解:(1)∵,
∴a2==,
a3==,
(2)a4==﹣,
∴每3个数循环一次,
∵2021÷3=673…2,
∴a2021=a2=.
故答案为:;
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
5、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
三、解答题
1、,-20
【解析】
【分析】
原式去括号,再合并同类项化简,继而将a、b的值代入计算可得.
【详解】
解:原式
.
当,时,
原式.
【点睛】
本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.
2、;2
【解析】
【分析】
先根据整式加减运算的法则进行化简,然后根据非负数的性质求出a、b,再代值计算即可;
【详解】
解:
=
=;
因为有理数、满足,
所以,
所以,
所以原式=
【点睛】
本题主要考查了整式的加减运算和非负数的性质,属于常考题型,熟练掌握整式加减运算的法则是关键.
3、,0
【解析】
【分析】
先计算完全平方公式、平方差公式、整式的乘法,再计算整式的加减法,然后将代入计算即可得.
【详解】
解:原式,
,
,
将代入得:原式.
【点睛】
本题考查了整式的化简求值,熟练掌握乘法公式和运算法则是解题关键.
4、(1)(2)
【解析】
【分析】
(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可;
(2)运用平方差公式计算即可.
【详解】
解:(1)
=
=
=
=
(2)
=
=
=.
【点睛】
本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.
5、
【解析】
【分析】
去括号合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了下列计算正确的有,下列叙述中,正确的是,下列说法不正确的是,已知整数,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习,共20页。试卷主要包含了下列运算正确的是,下列说法正确的是,下列去括号正确的是.,下列等式成立的是等内容,欢迎下载使用。