初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习,共17页。试卷主要包含了下列关于整式的说法错误的是,观察下列这列式子,下列计算中,正确的是,下列结论中,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.多项式x2+y2﹣1的常数项是1D.多项式x2+2x+18是二次三项式2、下列式子:x2+2,,,, −5a,0中,单项式的个数是( )A.6个 B.5个 C.4个 D.3个3、下面说法正确的是( )A.倒数等于它本身的数是1B.是最大的负整数C.单项式的系数是,次数是2D.与是同类项4、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项5、观察下列这列式子:,,,,,…,则第n个式子是( )A. B.C. D.6、下列各式中,能用平方差公式计算的是( )A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)C.(a+b)(a﹣d) D.(a+b)(2a﹣b)7、下列计算中,正确的是( )A. B.C. D.8、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.﹣xyz2单项式的系数为﹣1,次数是4C.单项式a的次数是1,没有系数D.多项式2x2+xy+3是四次三项式9、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )A.30 B.33 C.35 D.4210、如图是某月份的日历,那么日历中同一竖列相邻三个数的和不可能是( )
A.39 B.51 C.53 D.60第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.2、如果是个完全平方式,那么的值是______.3、计算:_______4、22013•()2012=_____.5、图中的四边形均为长方形,根据图形,写出一个正确的等式:____________.三、解答题(5小题,每小题10分,共计50分)1、已知A,B是关于x的整式,其中,.(1)化简A+2B;(2)当x=2时,A+2B的值为﹣5,求式子3n-3m+9的值.2、计算:3、先化简再求值:(1),其中a=1,b=2.(2),其中x=.4、观察下面三行数,回答问题:,4,,16,,64…1,7,,19,,67…2,5,,11,,35…(1)第①行数按什么规律排列,请用含n(n为正整数)的式子表示;(2)第②③行数与第①行数存在一定关系,计算这两行数的差(用含n的式子表示).5、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2. ---------参考答案-----------一、单选题1、D【详解】根据单项式和多项式的相关定义解答即可得出答案.【分析】解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.故选D.【点睛】本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.2、D【分析】根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式【详解】解:x2+2,,,, −5a,0中,, −5a,0是单项式,共3个,其他的不是单项式故选D【点睛】本题考查了单项式的定义,理解单项式的定义是解题的关键.3、B【分析】选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:.倒数等于它本身的数是,故本选项不合题意;.是最大的负整数,正确,故本选项符合题意;.单项式的系数是,次数是3,故本选项不合题意;.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;故选:.【点睛】本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.4、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.5、C【分析】根据题意得:第1个式子:,第2个式子:,第3个式子:,第4个式子:,第5个式子:,…,由此发现规律,即可求解 .【详解】解:根据题意得:第1个式子:,第2个式子:,第3个式子:,第4个式子:,第5个式子:,…,由此发现,第 个式子: .故选:C【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.6、B【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.【详解】解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B.【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.8、B【分析】根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.【详解】解:A、单项式的系数是,次数是3,故本选项错误不符合题意;B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;C、单项式a的次数是1,系数是1,故本选项错误不符合题意;D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.故选:B.【点睛】本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.9、C【分析】由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.【详解】解:∵第1个图形需要黑色棋子的个数是2×3-3=3, 第2个图形需要黑色棋子的个数是3×4-4=8, 第3个图形需要黑色棋子的个数是4×5-5=15, … ∴第5个图形需要黑色棋子的个数是. 故选:C.【点睛】本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.10、C【分析】设中间的数为,日历中同一竖列相邻三个数分别为 ,进而求得三个数的和为,由为整数可知三个数的和为3的倍数,据此求解即可【详解】设中间的数为,日历中同一竖列相邻三个数分别为 三个数的和为,即为3的倍数,4个选项中只有53不是3的倍数,故选C【点睛】本题考查了列代数式,整式的加减的应用,求得三个数的和是3的倍数是解题的关键.二、填空题1、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.2、-2或6【分析】由题意直接利用完全平方公式的结构特征判断即可求出m的值.【详解】解:∵是个完全平方式,∴,解得:-2或6.故答案为:-2或6.【点睛】本题主要考查完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3、【分析】先把原式化为,再计算乘方运算,再算乘法运算,即可得到答案.【详解】解: 故答案为:【点睛】本题考查的是同底数幂的乘法的逆运算,积的乘方运算的逆运算,掌握“”是解本题的关键.4、2【分析】把22013化成22012•2,再逆用积的乘方即可求解.【详解】解:22013•()2012=22012•2•()2012=2•()2012=2.故答案为:2.【点睛】本题考查了积的乘方,熟练掌握积的乘方的运算法则是解题的关键.5、 (x+2y)(x+y)=【分析】根据图形,从两个角度计算长方形面积即可求出答案.【详解】解:大长方形的面积=(x+2y)(x+y),大长方形的面积= ,∴(x+2y)(x+y)=,故答案为:(x+2y)(x+y)=.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则.三、解答题1、(1);(2)【解析】【分析】(1)根据整式加减运算的性质计算,即可得到答案;(2)结合(1)的结论,通过移项并合并同类项,得,结合代数式的性质计算,即可得到答案.【详解】(1);(2)根据题意,得:去括号,得:移项、合并同类项,得:∴,即∴.【点睛】本题考查了整式加减运算、代数式的知识;解题的关键是熟练掌握整式加减运算的性质,从而完成求解.2、【解析】【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:==.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a2±2ab+b2;平方差公式是(a+b)(a-b)=a2-b2.3、(1),2;(2),.【解析】【分析】(1)先去括号,再计算整式的加减,然后将的值代入计算即可得;(2)先去括号,再计算整式的加减,然后将的值代入计算即可得.【详解】解:(1)原式,,将代入得:原式;(2)原式,,将代入得:原式.【点睛】本题考查了整式加减中的化简求值,熟练掌握整式的加减运算法则是解题关键.4、(1);(2)或【解析】【分析】(1)先确定符号,奇数为负,偶数为正,表示为,再确定数值,2=,4=,8=,把符号与数值组合即为答案;(2)第②行比第①行各数多3,第③行比第①行各数一半多3,计算即可.【详解】(1),4,,16,,64…奇数为负,偶数为正,符号可表示为,∵2=,4=,8=,…∴规律排是;(2)∵第②行比第①行各数多3,∴第②行的规律是+3;∵第③行是比第①行各数一半多3,∴第③行的规律是+3即+3;∴这两行的差为+3-(+3)或 +3-+3),整理,得或.【点睛】本题考查了有理数中的规律,学会从符号,底数,指数角度寻找与序号的关系是解题的关键.5、﹣8x2﹣15,-47【解析】【分析】先去括号合并同类项,再把x=2代入计算.【详解】解:2(﹣4x2+2x﹣8)﹣(4x﹣1)=﹣8x2+4x﹣16﹣4x+1=﹣8x2﹣15,∵x=2,∴原式=﹣8×22﹣15=﹣32﹣15=﹣47.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后复习题,共18页。试卷主要包含了下列运算正确的是,下列计算正确的是,多项式的次数和常数项分别是,如果a﹣4b=0,那么多项式2等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了下列运算中,正确的是,下列运算正确的是,下列说法正确的是,已知,,则等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算不正确的是,下列等式成立的是,下列去括号正确的是.,下列运算正确的是,已知下列一组数等内容,欢迎下载使用。