北京课改版七年级下册第六章 整式的运算综合与测试巩固练习
展开这是一份北京课改版七年级下册第六章 整式的运算综合与测试巩固练习,共18页。试卷主要包含了下列各式运算的结果可以表示为,下列说法中,下列运算正确的是,如果a﹣4b=0,那么多项式2等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于单项式2x2y的说法正确的是( )
A.系数是1,次数是2 B.系数是2,次数是2
C.系数是1,次数是3 D.系数是2,次数是3
2、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )
A.30 B.33 C.35 D.42
3、1883年,康托尔构造了一个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为( )
A. B. C. D.
4、下列各式运算的结果可以表示为( )
A. B.
C. D.
5、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
6、下列运算正确的是( )
A. B.
C. D.
7、如果a﹣4b=0,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是( )
A.﹣1 B.﹣2 C.1 D.2
8、对代数式-(a-b)进行去括号运算,结果正确的是( )
A.a-b B.-a-b C.a+b D.–a+b
9、若(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,则a,b的值可以是( )
A.0,0 B.0,﹣1 C.2,0 D.2,﹣1
10、下列式子:x2+2,,,, −5a,0中,单项式的个数是( )
A.6个 B.5个 C.4个 D.3个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、减去等于的多项式是______.
2、________________.
3、若关于、的多项式中不含项,则______.
4、观察下面三行数:
﹣2、4、﹣8、16、﹣32、64…①
﹣5、1、﹣11、13、﹣35、61…②
﹣、1、﹣2、4、﹣8、16…③
取每行数的第10个数,则这三个数的和为________.
5、如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是 _____.
﹣1 | a | b | c | 3 | b |
|
| ﹣5 |
| … |
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中,b=-3.
2、(1)如表,方程1,方程2,方程3,...是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的横线处;
序号 | 方程 | 方程的解 |
1 | ﹣(x﹣2)=1 | x= |
2 | ﹣(x﹣3)=1 | x= |
3 | x= | |
... | ... | ... |
(2)方程﹣(x﹣a)=1的解是x=,求a的值.该方程是不是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?
3、先化简,再求值:,其中,.
4、直接写出计算结果
(1)5+5÷(﹣5)= ;
(2)﹣24×(﹣1)= ;
(3)(ab2)2= ;
(4)x2yx2y= .
5、我们用表示一个三位数,其中x表示百位上的数,y表示十位上的数,z表示个位上的数,即.
(1)说明一定是111的倍数;
(2)①写出一组a,b,c的取值,使能被7整除,这组值可以是a= ,b= ,c= ;
②若能被7整除,则a,b,c三个数必须满足的数量关系是 .
---------参考答案-----------
一、单选题
1、D
【分析】
利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.
【详解】
解:单项式2x2y的系数为2,次数为3.
故选:D.
【点睛】
本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键.
2、C
【分析】
由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.
【详解】
解:∵第1个图形需要黑色棋子的个数是2×3-3=3,
第2个图形需要黑色棋子的个数是3×4-4=8,
第3个图形需要黑色棋子的个数是4×5-5=15,
…
∴第5个图形需要黑色棋子的个数是.
故选:C.
【点睛】
本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.
3、C
【分析】
根据题意具体表示前几个式子,然后总结归纳规律,即可得到答案.
【详解】
解:由题意得:
第一阶段时,余下的线段的长度之和为,
第二阶段时,余下的线段的长度之和为,
第三阶段时,余下的线段的长度之和为,
… 以此类推, 当达到第n个阶段时(n为正整数),余下的线段的长度之和为.
故选:C.
【点睛】
本题考查有理数的乘方的应用,图形类的变化规律,找出余下的线段的长度之和之间的联系,得出规律是解本题的关键.
4、B
【分析】
分析对每个选项进行计算,再判断即可.
【详解】
A选项:,故A错误;
B选项:,故B正确;
C选项:,故C错误;
D选项:,故D错误.
故选B.
【点睛】
考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.
5、C
【分析】
根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.
【详解】
解:(1)整数与分数统称为有理数,说法正确;
(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;
(3)多项式是三次二项式,原说法错误;
(4)倒数等于它本身的数是,说法正确;
(5)与是同类项,说法正确;
综上,说法正确的有(1)(4)(5),共3个,
故选:C.
【点睛】
本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.
6、B
【分析】
根据幂的运算和乘法公式逐项判断即可.
【详解】
解:A. ,原选项不正确,不符合题意;
B. ,原选项正确,符合题意;
C. ,原选项不正确,不符合题意;
D. ,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.
7、A
【分析】
利用整式的加减计算法则和去括号法则化简,由此求解即可.
【详解】
解:∵,
∴
,
故选A.
【点睛】
本题主要考查了整式的加减--化简求值,去括号,熟知相关计算法则是解题的关键.
8、D
【分析】
根据去括号法则进行计算即可.
【详解】
解:代数式-(a-b)进行去括号运算,结果是–a+b.
故选:D
【点睛】
本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.
9、C
【分析】
根据二次二项式的定义得到,求出,得到选项.
【详解】
解:∵(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,
∴,
∴,
故选:C.
【点睛】
此题考查多项式的次数及项数的定义,熟记定义是解题的关键.
10、D
【分析】
根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式
【详解】
解:x2+2,,,, −5a,0中,, −5a,0是单项式,共3个,其他的不是单项式
故选D
【点睛】
本题考查了单项式的定义,理解单项式的定义是解题的关键.
二、填空题
1、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
2、
【分析】
利用平方差公式直接求解即可求得答案.
【详解】
解:(a+2)(a-2)=.
故答案为:
【点睛】
本题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
3、3
【分析】
先合并关于xy的同类项,再令项的系数等于零求解.
【详解】
解:
=,
∵多项式中不含项,
∴-2k+6=0,
∴k=3.
故答案为:3.
【点睛】
本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.
4、
【分析】
观察第①行数排列的规律,发现第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,进而可得每行数的第个数的和.
【详解】
解:根据三行数的规律可知:
第①行第个数是,
第②行数是第①行数减去,
第③行数是第①行数乘以,
则每行数的第个数的和为:
=
=
=,
故答案为:.
【点睛】
本题考查了数字的变化规律,根据题意得出每列数字的变化规律是解本题的关键.
5、3
【分析】
根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴﹣1+a+b=a+b+c,
解得:c=﹣1,
a+b+c=b+c+3,
解得:a=3,
∴数据从左到右依次为﹣1、3、b、﹣1、3、b,
∴第9个数与第三个数相同,即b=﹣5,
∴每3个数“﹣1、3、﹣5”为一个循环组依次循环,
∵2021÷3=673……2,
∴第221个格子中的整数与第2个格子中的数相同,为3.
故答案为:3
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
三、解答题
1、,.
【解析】
【分析】
原式去括号合并得到最简结果,把、的值代入计算即可求值.
【详解】
解:,
,
,
∵当,b=-3时,原式.
【点睛】
此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
2、(1);(2),方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.
【解析】
【分析】
(1)根据去括号,移项,合并,系数化为1的步骤求解即可;
(2)把代入方程中求出a的值,然后找出(1)中方程的规律即可得到答案.
【详解】
解:(1)
去括号得:,
移项得:,
合并得:,
系数化为1得:,
故答案为:;
(2)∵方程的解是,
∴,
∴,
解得,
∵方程的解为,
方程的解为,
方程的解为,
∴方程的解为,
∴方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.
【点睛】
本题主要考查了解一元一次方程,数字类的规律型探索,解题的关键在于能够熟练掌握解一元一次方程的方法.
3、;
【解析】
【分析】
去括号得,将代入求值即可.
【详解】
解:原式
,
当时,
原式
.
【点睛】
本题考查了整式加减中的去括号.解题的关键在于去括号时正负号的确定.
4、(1)4;(2)44;(3)a2b4;(4)x2y
【解析】
【分析】
(1)先算除法,再算加减即可;
(2)先把带分数化为假分数,在计算乘法即可;
(3)根据积的乘方和幂的乘方计算即可;
(4)根据合并同类项的法则计算即可;
【详解】
(1)原式;
(2)原式;
(3)原式;
(4)原式;
【点睛】
本题主要考查了有理数的混合运算,积的乘方和幂的乘方,合并同类项,准确计算是解题的关键.
5、(1)证明见解析;(2)①;②或或
【解析】
【分析】
(1)列代数表示,再合并同类项,再利用乘法的分配律进行变形,从而可得答案;
(2)①由,可得一定是7的因数,从而可得答案;②由能被7整除,可得一定是7的因数,而都为至的正整数,从而可得答案.
【详解】
解:(1)
一定是的倍数.
(2)① ,
而不是的因数,所以一定是7的因数,
令 则
故答案为:(答案不唯一)
② 能被7整除,
所以一定是7的因数,而都为至的正整数,
则a,b,c三个数必须满足的数量关系为:
或或
【点睛】
本题考查的是列代数式,乘法的分配律的应用,合并同类项,整除的含义,掌握“用代数式表示一个三位数”是解本题的关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试随堂练习题,共19页。试卷主要包含了下列运算正确的是,下列判断正确的是,下列说法不正确的是,下列等式成立的是等内容,欢迎下载使用。
这是一份北京课改版第六章 整式的运算综合与测试习题,共20页。试卷主要包含了多项式+1的次数是,下列各式中,计算结果为的是,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共18页。试卷主要包含了下列表述正确的是,下列关于整式的说法错误的是,下列计算正确的是,观察下列这列式子,下列数字的排列等内容,欢迎下载使用。