初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题,共17页。试卷主要包含了下列计算正确的有,单项式的系数和次数分别是,下列式子,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B.
C. D.
2、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )
A.1 B.9 C.4 D.6
3、下列各式中,计算结果为的是( )
A. B.
C. D.
4、下列计算正确的有( )
① ② ③ ④
A.3个 B.2个 C.1个 D.0个
5、单项式的系数和次数分别是( )
A.-2,5 B.,5 C.,2 D.,2
6、下列式子:x2+2,,,, −5a,0中,单项式的个数是( )
A.6个 B.5个 C.4个 D.3个
7、下列运算正确的是( )
A. B.
C. D.
8、下列计算正确的是( )
A.a+b=ab B.7a+a=7a2
C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b
9、数左手手指,1为大拇指,数到第2011时对应的手指是( )
A.无名指 B.食指 C.中指 D.大拇指
10、下列运算正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于、的多项式是二次三项式,则_______.
2、化简得______.
3、黑白两种颜色的纸片,按如图所示的规律拼成若干个图案,第n个图形有白纸片____________张.
4、数a,b在数轴上的位置如图所示,化简:|b﹣a|+|b|=______.
5、有理数a,b,c在数轴上的位置如图所示,化简:|c﹣a|+|c﹣b|+|a+b|=_____.
三、解答题(5小题,每小题10分,共计50分)
1、若,求的值.
2、先化简,再求值:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2),其中x=﹣2,y=.
3、如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c.
(1)________,__________,________.
(2)若将数轴在点O折叠,则点A落下的位置与点C的距离为_______;
(3)点开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,t秒过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则_____,_____(t的整式表示)
(4)在(3)的条件下,当AC=3AB时,求的值.
4、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为,,所以31568是“最佳拍档数”.
(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.
(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.
5、马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.
(1)请你帮助马虎同学求出这道题的正确结果;
(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.
---------参考答案-----------
一、单选题
1、D
【分析】
直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.
【点睛】
本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.
2、D
【分析】
根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.
【详解】
解:当y=1时,
ay3+4by+3=a+4b+3=4,
∴a+4b=1,
∵x2﹣2x﹣5=0,
∴x2﹣2x=5,
当y=﹣1时,
﹣2(x+2by)+(x2﹣ay3)
=﹣2x﹣4by+x2﹣ay3
=﹣2x+4b+x2+a
∵a+4b=1,x2﹣2x=5,
∴﹣2x+4b+x2+a
=﹣2x+x2+a+4b
=5+1
=6.
故选:D
【点睛】
本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.
3、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
4、B
【分析】
括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.
【详解】
解:,所以正确,符合题意;
,所以错误,不符合题意;
,所以错误,不符合题意;
,所以正确,符合题意.
故选B.
【点睛】
本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.
5、B
【分析】
根据单项式系数及次数定义解答.
【详解】
解:单项式的系数和次数分别是,2+1+2=5,
故选:B.
【点睛】
此题考查了单项式的次数及系数的定义,熟记定义是解题的关键.
6、D
【分析】
根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式
【详解】
解:x2+2,,,, −5a,0中,, −5a,0是单项式,共3个,其他的不是单项式
故选D
【点睛】
本题考查了单项式的定义,理解单项式的定义是解题的关键.
7、C
【分析】
根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.
【详解】
解:A. ,故该选项错误,
B. ,故该选项错误,
C. ,故该选项正确,
D. ,故该选项错误,
故选C.
【点睛】
本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.
8、C
【分析】
根据整式的加减运算法则和去括号法则即可求出答案.
【详解】
解:A、a与b不是同类项,故不能合并,故A不符合题意.
B、7a+a=8a,故B不符合题意.
C、3x2y﹣2yx2=x2y,故C符合题意.
D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.
故选C.
【点睛】
本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.
9、C
【分析】
根据题意可得::第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,从而得到2011是从2开始的第2011﹣1=2010个数,可得2011是第503个循环组的第2个数,即可求解.
【详解】
解:根据题意得:第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,
∵2011是从2开始的第2011﹣1=2010个数,
∴2010÷8=251…2,
∴2011是第252个循环组的第2个数,
∴第2011与3的位置相同,即中指的位置.
故选:C
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
10、C
【分析】
结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.
【详解】
A、a2和a不是同类项,不能合并,故本选项错误;
B、ax和ay不是同类项,不能合并,故本选项错误;
C、,计算正确,故本选项正确;
D、(,故本选项错误.
故选:C.
【点睛】
本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键.
二、填空题
1、
【分析】
直接利用多项式系数与次数确定方法得出−2m−1=0,进而得出答案.
【详解】
解:∵关于x、y的多项式2x2+3mxy−y2−xy−5是二次三项式,
∴3mxy−xy=0,
则3m−1=0,
解得:m=.
故答案为:.
【点睛】
此题主要考查了多项式,正确掌握相关定义是解题关键.
2、
【分析】
去括号再合并同类项即可.
【详解】
故答案为:
【点睛】
本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.
3、(3n+1)n)
【分析】
先求出每一个图形的白色纸片的块数,找出规律,后一个图形比前一个图形的白色纸片多3块,然后总结出第n个图形的表示纸片的块数;
【详解】
解:第1个图形有白色纸片有:4=3+1块,
第2个图形有白色纸片有:7=3×2+1块,
第3个图形有白色纸片有:10=3×3+1块,
…,
第n个图形有白色纸片:3n+1块,
故答案为:(3n+1).
【点睛】
本题考查了图形的变化规律,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.
4、b+a
【分析】
根据数a,b在数轴上的位置得出,然后化简绝对值即可.
【详解】
解:根据数a,b在数轴上的位置可得:
,
∴,,
∴|b﹣a|+|b|=,
故答案为:.
【点睛】
本题考查了在数轴上表示有理数,化简绝对值,根据点在数轴上的位置得出相应式子的正负是解本题的关键.
5、2b
【分析】
根据有理数a,b,c在数轴上的位置可得c﹣a>0,c﹣b<0,a+b>0,再根据绝对值的意义进行化简即可.
【详解】
根据有理数a,b,c在数轴上的位置可知,a<0<c<b,,
∴c﹣a>0,c﹣b<0,a+b>0,
∴|c﹣a|+|c﹣b|+|a+b|
=c﹣a+b﹣c+a+b
=2b,
故答案为:2b
【点睛】
本题考查的是利用数轴比较有理数的大小,有理数的加减法的运算法则,绝对值的化简,去括号,整式的加减运算,掌握以上知识是解题的关键.
三、解答题
1、25
【解析】
【分析】
首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.
【详解】
解:∵,
∴x2−2x+1+y2+6y+9=0,
∴(x−1)2+(y+3)2=0,
∴x−1=0,y+3=0,
∴x=1,y=−3,
∴(2x−y)2=(2+3)2=25.
【点睛】
此题主要考查了配方法的运用,非负数的性质,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.
2、x2,4
【解析】
【分析】
原式去括号,合并同类项进行化简,然后再代入求值.
【详解】
解:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2)
=3x2﹣xy+2y2﹣2x2+xy﹣2y2
=x2,
把x=﹣2代入得,原式=(﹣2)2=4.
【点睛】
本题主要考查整式的化简,关键是要牢记去括号的法则和合并同类项的法则.
3、(1)-4,1,6;(2)2;(3);(4)5
【解析】
【分析】
(1)根据多项式次数,单项式次数的定义,相反数的定义,最小的正整数的定义求解即可;
(2)先求出点A落下的位置为数轴上表示4的点的位置,然后根据数轴上两点距离公式求解即可;
(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,由此根据数轴上两点距离公式求解即可;
(4)先求出,再由,得到,由此求解即可.
【详解】
解:(1)∵a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c,
∴,,;
故答案为:-4,1,6;
(2)∵将数轴在点O折叠,
∴点A落下的位置为数轴上表示4的点的位置,
∵点C表示的数是6,
∴点A落下的位置与点C的距离为6-4=2,
故答案为:2;
(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,
∴,,
故答案为:,;
(4)由(3)可得,
∵,
∴,
解得.
【点睛】
本题主要考查了整式的加减计算,用数轴表示有理数,数轴上两点的距离,解一元一次方程,单项式和多项式次数的定义等等,熟知相关知识是解题的关键.
4、(1)是;(2)4152或4661
【解析】
【分析】
(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;
(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得是整数,进而可得出x、y的值,即可得答案.
【详解】
(1)1324的“顺数”与“逆数”分别为16324和13264,
∵=180,
∴1324是“最佳拍档数”.
故答案为:是
(2)设十位数字为x,百位数字为y,
∵个位数字与十位数字之和为7,百位数字不大于十位数字,
∴个位数字为(7),
∴N=4000+100y+10x+7,0≤x≤7,0≤y≤7,y≤x,
[(46000+100y+10x+7)(40000+1000y+100x+60+7)]÷17
=
=349,
∵N为“最佳拍档数”,
∴为整数,
∵x、y都为整数,0≤x≤7,0≤y≤7,y≤x,
∴或,
∴N=4152或N=4661.
【点睛】
本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.
5、(1)ab−10ac+9bc+6;(2)当b=a时,正确的计算结果与字母c的取值无关.
【解析】
【分析】
(1)先根据题意列出整式相加减的式子进行计算即可.
(2)将ab−10ac+9bc+6写成(9b−10a)c+ab+6,即可得到当b=a时,正确的计算结果与字母c的取值无关.
【详解】
解:(1)由题意得,(3ab−2ac+5bc)−2(ab−2bc+4ac−3)
=3ab−2ac+5bc−2ab+4bc−8ac+6
=ab−10ac+9bc+6,
∴正确结果为:ab−10ac+9bc+6;
(2)ab−10ac+9bc+6=(9b−10a)c+ab+6,
由题可得,9b−10a=0,
∴b=a,
∴当b=a时,正确的计算结果与字母c的取值无关.
【点睛】
本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试巩固练习,共15页。试卷主要包含了计算的结果是,把多项式按的降幂排列,正确的是,已知下列一组数等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了多项式的次数和常数项分别是,下列运算不正确的是,下列等式成立的是,下列计算正确的有等内容,欢迎下载使用。
这是一份初中数学第六章 整式的运算综合与测试综合训练题,共16页。试卷主要包含了下列等式成立的是,下列各式中,计算正确的是,下列式子正确的,下列计算正确的是,下列运算中正确的是等内容,欢迎下载使用。