初中第六章 整式的运算综合与测试同步达标检测题
展开这是一份初中第六章 整式的运算综合与测试同步达标检测题,共18页。试卷主要包含了下列说法正确的是,把式子去括号后正确的是,下列说法不正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子:x2+2,,,, −5a,0中,单项式的个数是( )
A.6个 B.5个 C.4个 D.3个
2、下列运算正确的是( )
A. B. C. D.
3、下列式子正确的是( )
A. B.
C. D.
4、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
5、把式子去括号后正确的是( )
A. B. C. D.
6、如图是某月份的日历,那么日历中同一竖列相邻三个数的和不可能是( )
A.39 B.51 C.53 D.60
7、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.572
8、下列说法不正确的是( )
A.的系数是 B.2不是单项式
C.单项式的次数是2 D.是多项式
9、如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为( )
A.0 B.3 C.6 D.9
10、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48;第二次输出的结果为24,…,则第2019次输出的结果为( )
A.0 B.1 C.2 D.﹣1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、化简得______.
2、若一个多项式减去等于x-1,则这个多项式是______.
3、正方形ABDC的轨道上有甲乙两只智能蚂蚁,同时从A出发,甲沿着正方形轨道顺时针出发,速度为每秒1cm,乙沿着正方形轨道逆时针出发,速度为每秒3cm,已知正方形ABDC的轨道边长为1cm,则甲乙在第2021次相遇时的位置在_____________.
4、规定:符号叫做取整符号,它表示不超过的最大整数,例如:,,.现在有一列非负数,,,,已知,当时,,则的值为_____.
5、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2.
2、化简:a(a﹣2b)+(a+b)2.
3、先化简后求值:,其中,.
4、先化简,再求值:,其中,.
5、阅读下列材料:
利用完全平方公式,可以把多项式变形为的形式.例如,==.
观察上式可以发现,当取任意一对互为相反数的值时,多项式的值是相等的.例如,当=±1,即=3或1时,的值均为0;当=±2,即=4或0时,的值均为3.
我们给出如下定义:
对于关于的多项式,若当取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于=对称,称=是它的对称轴.例如,关于=2对称,=2是它的对称轴.
请根据上述材料解决下列问题:
(1)将多项式变形为的形式,并求出它的对称轴;
(2)若关于的多项式关于=-5对称,则= ;
(3)代数式的对称轴是= .
---------参考答案-----------
一、单选题
1、D
【分析】
根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式
【详解】
解:x2+2,,,, −5a,0中,, −5a,0是单项式,共3个,其他的不是单项式
故选D
【点睛】
本题考查了单项式的定义,理解单项式的定义是解题的关键.
2、C
【分析】
结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.
【详解】
A、a2和a不是同类项,不能合并,故本选项错误;
B、ax和ay不是同类项,不能合并,故本选项错误;
C、,计算正确,故本选项正确;
D、(,故本选项错误.
故选:C.
【点睛】
本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键.
3、D
【分析】
根据去括号法则可直接进行排除选项.
【详解】
解:A、,原选项错误,故不符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项正确,故符合题意;
故选D.
【点睛】
本题主要考查去括号,熟练掌握去括号法则是解题的关键.
4、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
5、C
【分析】
由去括号法则进行化简,即可得到答案.
【详解】
解:,
故选:C
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.
6、C
【分析】
设中间的数为,日历中同一竖列相邻三个数分别为 ,进而求得三个数的和为,由为整数可知三个数的和为3的倍数,据此求解即可
【详解】
设中间的数为,日历中同一竖列相邻三个数分别为
三个数的和为,即为3的倍数,4个选项中只有53不是3的倍数,
故选C
【点睛】
本题考查了列代数式,整式的加减的应用,求得三个数的和是3的倍数是解题的关键.
7、D
【分析】
由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.
【详解】
解:第一个图形中有:个正方形;
第二个图形中有:个正方形,
第三个图形有:个正方形,
∴可以推出第n个图形有,
∴第 11 个图形中正方形的个数是
个正方形,
故选D.
【点睛】
本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.
8、B
【分析】
单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.
【详解】
解:的系数是,故A不符合题意;
2是单项式,原说法错误,故B符合题意;
单项式的次数是2,故C不符合题意;
是多项式,故D不符合题意;
故选B
【点睛】
本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.
9、C
【分析】
直接利用多项式的定义得出m-3=3,进而求出即可.
【详解】
解:∵整式xm-3+5x-3是关于x的三次三项式,
∴m-3=3,
解得:m=6.
故选:C.
【点睛】
本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.
10、B
【分析】
按照程序进行计算,发现规律,利用规律求解即可.
【详解】
解:当输入x=96时,第一次输出96×=48;
当输入x=48时,第二次输出48×=24;
当输入x=24时,第三次输出24×=12;
当输入x=12时,第四次输出12×=6;
当输入x=6时,第五次输出6×=3;
当输入x=3时,第六次输出3×3﹣1=8;
当输入x=8时,第七次输出8×=4;
当输入x=4时,第八次输出4×=2;
当输入x=2时,第九次输出2×=1;
当输入x=1时,第十次输出3×1﹣1=2;
…
∴从第8次开始,以2,1的形式循环出现,
∵(2019﹣7)÷2=1006,
∴第2019次输出的结果为:1.
故选:B.
【点睛】
本题考查了有理数的运算,解题关键是根据运算结果发现规律,利用规律解题.
二、填空题
1、
【分析】
去括号再合并同类项即可.
【详解】
故答案为:
【点睛】
本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.
2、
【分析】
由一个多项式减去等于x-1,求这个多项式,可列式为再合并同类项即可.
【详解】
解:一个多项式减去等于x-1,
所以这个多项式为:
故答案为:
【点睛】
本题考查的是减法的意义,整式的加减运算,正确的列出运算式进行计算是解本题的关键.
3、B点
【分析】
根据题意得出甲乙第一次相遇的位置是B点,第二次相遇的位置是D点,第三次相遇的位置是C点,第四次相遇的位置是A点,可得出四个为一循环,即可得出第2021次相遇时的位置.
【详解】
解:∵甲沿着正方形轨道顺时针出发,速度为每秒1cm,乙沿着正方形轨道逆时针出发,速度为每秒3cm,
第一秒时,甲从A点顺时针走到B点,乙从A点逆时针走到B点,此时甲乙相遇;
第二秒时,甲从B点顺时针走到D点,乙从B点逆时针走到D点,此时甲乙相遇;
第三秒时,甲从D点顺时针走到C点,乙从D点逆时针走到C点,此时甲乙相遇;
第四秒时,甲从C点顺时针走到A点,乙从C点逆时针走到A点,此时甲乙相遇;
第五秒时,甲从A点顺时针走到B点,乙从A点逆时针走到B点,此时甲乙相遇;
......
∴四个为一循环,
∴余1,
∴甲乙在第2021次相遇时的位置在B点.
故答案为:B点.
【点睛】
此题考查了规律问题,解题的关键是正确分析出题目中的规律.
4、11
【分析】
根据题意求出a1,a2,a3,…,的变化规律,根据规律即可求出a2022的值.
【详解】
解:根据题意可得:
当n=1时,得a1=10,
当n=2时,得=11,
当n=3时,得=12,
当n=4时,得=13,
当n=5时,得=14,
当n=6时,得=10,
.....,
∴a1,a2,a3,…的变化规律是每五个数一循环,
∵2022÷5=404…2,
∴a2022=a2=11,
故答案为:11.
【点睛】
本题主要考查取整函数的定义和应用,关键是能根据取整函数的定义找出a1,a2,a3,…,的变化规律.
5、101x10
【分析】
分析题中每个单项式,系数为(n2+1),含未知数的部分为:xn,则第n项应为:(n2+1)xn.
【详解】
解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,
则第n个单项式为:(n2+1)xn.
故第10个单项式为:(102+1)x10=101x10.
故答案为:101x10.
【点睛】
本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.
三、解答题
1、﹣8x2﹣15,-47
【解析】
【分析】
先去括号合并同类项,再把x=2代入计算.
【详解】
解:2(﹣4x2+2x﹣8)﹣(4x﹣1)
=﹣8x2+4x﹣16﹣4x+1
=﹣8x2﹣15,
∵x=2,
∴原式=﹣8×22﹣15
=﹣32﹣15
=﹣47.
【点睛】
本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
2、
【解析】
【分析】
利用单项式乘以多项式和完全平方公式的计算法则去括号,然后合并同类项即可.
【详解】
解:
.
【点睛】
本题主要考查了整式的混合运算,熟知相关计算法则是解题的关键.
3、,10
【解析】
【分析】
由题意先根据整式的加减运算法则进行化简,进而,代入原式即可求值.
【详解】
解:
当,时,原式.
【点睛】
本题考查整式的加减,熟练掌握整式的加减运算法则是解题的关键.
4、,
【解析】
【分析】
先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.
【详解】
解:原式
,
将,代入得:.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.
5、(1),对称轴为x=3;(2)5;(3)
【解析】
【分析】
(1)加上,同时再减去,配方,整理,根据定义回答即可;
(2)将配成,根据对称轴的定义,对称轴为x=-a,
根据对称轴的一致性,求a即可;
(3)将代数式配方成
=,根据定义计算即可.
【详解】
(1)
=
=.
∴该多项式的对称轴为x=3;
(2)∵=,
∴对称轴为x=-a,
∵多项式关于=-5对称,
∴-a=-5,
即a=5,
故答案为:5;
(3)∵
=
=
=,
∴对称轴为x=,
故答案为:.
【点睛】
本题考查了配方法,熟练进行配方是解题的关键.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试随堂练习题,共15页。试卷主要包含了计算的结果是,单项式的系数和次数分别是,把式子去括号后正确的是,下列运算正确的是,下列各式中,计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列计算正确的是,下列式子正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时练习,共16页。试卷主要包含了下列去括号正确的是.,若,,,则的值为,下列运算正确的是等内容,欢迎下载使用。