2021学年第六章 整式的运算综合与测试课时练习
展开
这是一份2021学年第六章 整式的运算综合与测试课时练习,共19页。试卷主要包含了下列运算正确的是,下列判断正确的是,下列等式成立的是,不一定相等的一组是,下列计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对代数式-(a-b)进行去括号运算,结果正确的是( )A.a-b B.-a-b C.a+b D.–a+b2、下列运算中,正确的是( )A.a2a3a2 B.2p(p)3p C.mm0 D.3、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项4、下列运算正确的是( )A.3a+2a=5a2 B.﹣8a2÷4a=2aC.4a2•3a3=12a6 D.(﹣2a2)3=﹣8a65、下列判断正确的是( )A.3a2bc与bca2不是同类项B.和都是单项式C.单项式﹣x3y2的次数是3D.多项式3x2﹣y+2xy2是三次三项式6、下列等式成立的是( )A. B.C. D.7、不一定相等的一组是( )A.2a与a+a B.a2b﹣ba2与0C.a﹣b与﹣(b﹣a) D.2(a﹣b)与2a﹣b8、下列计算正确的是( )A. B. C. D.9、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )A.左侧1010厘米 B.右侧1010厘米C.左侧1011厘米 D.右侧1011厘米10、一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是( )A.66 B.99 C.110 D.121第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,,则的值为________________.2、①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…根据上述规律,用含n的代数式表示第n个等式:_____.3、若代数式2a-b的值为3,则代数式4a-2b+1的值是_______.4、规定:符号叫做取整符号,它表示不超过的最大整数,例如:,,.现在有一列非负数,,,,已知,当时,,则的值为_____.5、下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系_________.三、解答题(5小题,每小题10分,共计50分)1、如果A、B两点在数轴上分别表示有理数a、b,那么它们之间的距离AB=|a﹣b|.如图1,已知数轴上两点A、B对应的数分别为﹣3和8,数轴上另有一个点P对应的数为x.(1)点P、B之间的距离PB= .(2)若点P在A、B之间,则|x+3|+|x﹣8|= .(3)如图2,若点P在点B右侧,且x=12,取BP的中点M,试求2AM﹣AP的值.2、计算(1)(2)3、(1)在数学中,完全平方公式是比较熟悉的,例如.若,,则______;(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,,的面积为6,设,,求与的面积之和;(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知,,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为______.4、阅读下列材料:1×2=(1×2×3﹣0×1×2);2×3=(2×3×4﹣1×2×3);3×4=(3×4×5﹣2×3×4);由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+19×20(写出过程).(2)猜想:1×2+2×3+3×4+…+n(n+1)= .(3)探究计算:1×2×3+2×3×4+3×4×5+…+17×18×19.5、先化简,在求值:其中,. ---------参考答案-----------一、单选题1、D【分析】根据去括号法则进行计算即可.【详解】解:代数式-(a-b)进行去括号运算,结果是–a+b.故选:D【点睛】本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.2、B【分析】根据合并同类项法则逐项计算即可.【详解】解:A. a2a3a,原选项不正确,不符合题意;B. 2p(p)3p,原选项正确,符合题意;C. mmm,原选项不正确,不符合题意;D. 不是同类项,原选项不正确,不符合题意;故选:B.【点睛】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.3、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.4、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可.【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D.【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键.5、D【分析】选项A根据同类项的定义判断即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;选项B、C根据单项式的定义判断即可,单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据多项式的定义判断即可,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.【详解】解:A、 3a2bc与bca2所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B、是多项式,故原说法错误,故本选项不合题意;C、单项式﹣x3y2的次数是5,故本选项不合题意;D、多项式3x2﹣y+2xy2是三次三项式,故本选项符合题意;故选:D.【点睛】本题考查了同类项,单项式和多项式,熟记相关定义是解答本题的关键.6、D【分析】利用同底数幂的乘法法则,完全平方公式,幂的乘方对各项进行运算即可.【详解】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意;故选:D.【点睛】本题考查了同底数幂的乘法法则,完全平方公式,幂的乘方,掌握同底数幂的乘法法则,完全平方公式,幂的乘方运算法则是解题的关键.7、D【分析】根据整式的运算计算即可.【详解】A. a+a=2a,故选项A一定相等;B. a2b﹣ba2=0,故选项B一定相等;C.﹣(b﹣a)=a﹣b,故选项C一定相等;D. 2(a﹣b)=2a﹣2b,故选项D不一定相等;故选:D【点睛】此题考查了整式的运算,掌握整式的运算法则和顺序是解答此题的关键.8、D【分析】由题意直接根据整式的加减运算法则进行逐项计算判断即可得出答案.【详解】解:A. ,选项错误;B. ,选项错误;C. ,选项错误;D. ,选项正确.故选:D.【点睛】本题考查整式的加减运算和去括号原则,熟练掌握去括号原则以及合并同类项原则是解题的关键.9、D【分析】由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.【详解】解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 所以每两次移动的结果是往右移动了1个单位长度, 所以移动第2022次到达点B,则对应的数为: 所以点B在点A点的右侧1011厘米处.故选D【点睛】本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.10、D【分析】先分别用代数式表示出原两位数和新两位数,然后根据整式的加减计算法则求出新两位数与原两位数的和,由此求解即可.【详解】解:∵一个两位数个位上的数是1,十位上的数是x,∴这个两位数为,∴把1与x对调后的新两位数为,∴,∴新两位数与原两位数的和一定是11的倍数,∵原两位数十位上的数字是x,∴(的正整数)∴,∴新两位数与原两位数的和不可能是121,故选D.【点睛】本题主要考查了整式加减的应用,解题的关键在于能够熟练掌握整式的加减计算法则.二、填空题1、19【分析】根据公式=计算.【详解】∵,∴=,∴==19,故答案为:19.【点睛】本题考查了完全平方公式的变形应用,灵活进行公式变形是解题的关键.2、(2n+3)2﹣4n2=12 n +9【分析】通过观察发现,式子的第一个数是从5开始的奇数,第二个数是从1开始的自然的平方的4倍,所得结果是12n+9,由此可求解.【详解】解:∵①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…,∴第n个式子是:(2n+3)2﹣4n2=12 n +9.故答案为:(2n+3)2﹣4n2=12 n +9【点睛】本题考查了根据式子找规律,并表示规律,根据题意,找出各式中变化的规律是解题关键.3、7【分析】代数式中4a-2b是2a-b的2倍,故用整体代入法即可解决.【详解】4a-2b+1=2(2a-b)+1=2×3+1=7故答案为:7【点睛】本题考查了求代数式的值,运用整体思想是解答本题的关键.4、11【分析】根据题意求出a1,a2,a3,…,的变化规律,根据规律即可求出a2022的值.【详解】解:根据题意可得:当n=1时,得a1=10,当n=2时,得=11,当n=3时,得=12,当n=4时,得=13,当n=5时,得=14,当n=6时,得=10,.....,∴a1,a2,a3,…的变化规律是每五个数一循环,∵2022÷5=404…2,∴a2022=a2=11,故答案为:11.【点睛】本题主要考查取整函数的定义和应用,关键是能根据取整函数的定义找出a1,a2,a3,…,的变化规律.5、d-c=b-a【分析】此题可以有多种表示方法:①横向来看,左右两个数的差都是1;②纵向看,上下两个数字的差相等;③对角线的角度看,两个数字的和相等.【详解】解:d-c=b-a(答案不唯一).故答案为:d-c=b-a.【点睛】本题考查了数字变化规律,熟悉生活中的一些常识,能够把数学和生活密切联系起来.从所给材料中分析数据得出规律是应该具备的基本数学能力.三、解答题1、(1);(2);(3)【解析】【分析】(1)根据题意直接写出数轴上两点的距离;(2)根据点的值可得,进而化简绝对值,根据整式的加减进行计算即可;(3)根据题意求得点表示的数,进而根据两点距离进行计算求解即可【详解】解:(1) B对应的数分别为8,点P对应的数为x. PB=故答案为:(2)点P在A、B之间,,|x+3|+|x﹣8|=故答案为:11(3)如图, x=12,是的中点表示的点为【点睛】本题考查了数轴上两点的距离,用数轴上的点表示有理数,化简绝对值,整式的加减,掌握两点的距离公式是解题的关键.2、(1);(2)【解析】【分析】(1)先去括号,再合并同类项.(2)先去括号,再合并同类项.【详解】(1)解:原式(2)解:原式【点睛】本题主要是考查了整式的减加运算,熟练掌握整式加减的两个基本步骤:去括号和合并同类项,是求解该类问题的关键.3、(1)13;(2);(3)22.【解析】【分析】(1)根据完全平方公式变形得出即可;(2)设,,根据等腰直角三角形ACE和CBF,得出AC=EC=a,BC=CF=b,根据,得出,,利用公式变形得出即可;(3)设BM=m,BN=n,根据S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,根据四边形ABCD为正方形,AB=BC,列等式m+7=n+3,得出n-m=4,根据公式变形得出即可.【详解】解:(1),故答案为:13;(2)设,,∵等腰直角三角形ACE和CBF,∴AC=EC=a,BC=CF=b,∵,∴,∵S△ACF=,∴,S△ACE+S△CBF=,∵,∴S△ACE+S△CBF=;(3)设BM=m,BN=n,∵S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,四边形ABCD为正方形,AB=BC,∴m+7=n+3,∴n-m=4,∵,∴,∴S矩形BNHM=mn=22.故答案为:22.【点睛】本题考查完全平方公式变形应用,掌握公式变形应用的方法,数形结合,识别出题者意图是解题的突破口.4、(1)2660;过程见解析;(2)[n×(n+1)×(n+2)];(3)29070.【解析】【分析】(1)根据题意规律进行解答即可;(2)根据题意规律进行解答即可;(3)仿照(1)(2)可得中的规律进行解答即可.【详解】(1)1×2+2×3+3×4+…+19×20=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(19×20×21﹣18×19×20)=(19×20×21)=19×20×7=2660;(2)1×2+2×3+3×4+…+n(n+1)=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+ [n×(n+1)×(n+2)﹣(n﹣1)×n×(n+1)]= [n×(n+1)×(n+2)],故答案为: [n×(n+1)×(n+2)];(3)1×2×3+2×3×4+3×4×5+…+17×18×19=(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+(3×4×5×6﹣2×3×4×5)+…+(17×18×19×20﹣16×17×18×19)=(17×18×19×20)=29070.【点睛】本题考查了数字的变化规律,根据所给式子,探索式子的一般规律,并能准确计算是解题的关键.5、;1【解析】【分析】根据整式的加减计算法则和去括号法则化简,然后代值计算即可.【详解】解:,当,时,原式.【点睛】本题主要考查了整式的化简求值和去括号,解题的关键在于能够熟练掌握相关计算法则.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试巩固练习,共17页。试卷主要包含了下列说法不正确的是,下列说法正确的是,单项式的系数和次数分别是,用“※”定义一种新运算等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试精练,共17页。试卷主要包含了如果a﹣4b=0,那么多项式2,下列计算中,正确的是,下列说法正确的是,下列运算中正确的是,下列计算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试精练,共17页。试卷主要包含了多项式+1的次数是,下列计算中,结果正确的是,下列说法正确的是等内容,欢迎下载使用。