初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时作业
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了下列各式中,计算结果为的是,多项式的次数和常数项分别是,下列结论中,正确的是,下列说法正确的是,下列各式中,计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作10次,则M10N10=( )
A.2 B. C. D.
2、 “数形结合”是一种重要的数学思维,观察下面的图形和算式:
解答下列问题:请用上面得到的规律计算:21+23+25+27…+101=( )
A. B. C. D.
3、把多项式按的降幂排列,正确的是( )
A. B.
C. D.
4、下列各式中,计算结果为的是( )
A. B.
C. D.
5、多项式的次数和常数项分别是( )
A.1和 B.和 C.2和 D.3和
6、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.﹣xyz2单项式的系数为﹣1,次数是4
C.单项式a的次数是1,没有系数
D.多项式2x2+xy+3是四次三项式
7、如图是某月份的日历,那么日历中同一竖列相邻三个数的和不可能是( )
A.39 B.51 C.53 D.60
8、下列说法正确的是( )
A.是单项式 B.0不是单项式
C.是单项式 D.是单项式
9、下列各式中,计算正确的是( )
A.(3a)2=3a2 B.-2(a-1)=-2a+1
C.5a2-a2=4a2 D.4a2b-2ab2=2ab2
10、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )
A.﹣2 B.0 C.2 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下面一列数,按某种规律在横线上填上适当的数:1,,,,____,_____,则第n个数为_____.
2、化简得______.
3、减去等于的多项式是______.
4、已知,两数在数轴上对应的点如图所示,化简的结果是___.
5、观察下列三行数,并完成填空:
①﹣2,4,﹣8,16,﹣32,64,…
②1,﹣2,4,﹣8,16,﹣32,…
③0,﹣3,3,﹣9,15,﹣33,…
第①行数按一定规律排列,第2022个数是_____;若取每行数的第2022个数,计算这三个数的和为_____.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2.
2、定义一种新运算:对任意有理数a,b都有a⊕b=a﹣2b,例如:2⊕3=2﹣2×3=﹣4.
(1)求﹣3⊕2的值;
(2)化简并求值:(x﹣2y)⊕(x+2y),其中x=3⊕2,y=﹣1⊕4.
3、先化简,再求值:
4、先化简,再求值:,其中.
5、2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:,,,,,,,.
(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?
(2)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含的代数式表示)
---------参考答案-----------
一、单选题
1、C
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,从而找到MnNn的规律,即可求出结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1﹣AN1
=AM﹣AN
=(AM﹣AN)
=MN
=×20
=10.
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2﹣AN2
=AM1﹣AN1
=(AM1﹣AN1)
=M1N1
=××20
=×20
=5.
发现规律:
MnNn=×20,
∴M10N10=×20.
故选:C.
【点睛】
本题考查两点间的距离,根据线段中点的定义得出MnNn=×20是解题关键.
2、B
【分析】
由题意根据图形和算式的变化发现规律,进而根据得到的规律进行计算即可.
【详解】
解:观察以下算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
发现规律:
1+3+5+7+9+…+19=100=102.
∴1+3+5+7+9+…+19+21+23+25+27+…+101=512
∴21+23+25+27+…+101=512-102=2501.
故选:B.
【点睛】
本题考查规律型-图形的变化类、有理数的混合运算,解决本题的关键是根据图形和算式的变化寻找规律,并运用规律.
3、D
【分析】
先分清多项式的各项,然后按多项式降幂排列的定义排列.
【详解】
解:把多项式按的降幂排列:
,
故选:D
【点睛】
本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.
4、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
5、D
【分析】
多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.
【详解】
解:有题意可知多项式的次数为3,常数项为
故选D.
【点睛】
本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.
6、B
【分析】
根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.
【详解】
解:A、单项式的系数是,次数是3,故本选项错误不符合题意;
B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;
C、单项式a的次数是1,系数是1,故本选项错误不符合题意;
D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.
故选:B.
【点睛】
本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.
7、C
【分析】
设中间的数为,日历中同一竖列相邻三个数分别为 ,进而求得三个数的和为,由为整数可知三个数的和为3的倍数,据此求解即可
【详解】
设中间的数为,日历中同一竖列相邻三个数分别为
三个数的和为,即为3的倍数,4个选项中只有53不是3的倍数,
故选C
【点睛】
本题考查了列代数式,整式的加减的应用,求得三个数的和是3的倍数是解题的关键.
8、C
【分析】
根据单项式的定义逐个判断即可.
【详解】
解:A、是分式,不是整式,不是单项式,故本选项不符合题意;
B、0是单项式,故本选项不符合题意;
C、是单项式,正确,故本选项符合题意;
D、是多项式,不是单项式,故本选项不符合题意;
故选:C.
【点睛】
本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.
9、C
【分析】
分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.
【详解】
解:A、(3a)2=9a2,故选项错误,不符合题意;
B、-2(a-1)= -2a+2,故选项错误,不符合题意;
C、5a2-a2=4a2,故选项正确,符合题意;
D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.
故选:C.
【点睛】
此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.
10、C
【分析】
先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.
【详解】
解:由题意得:,即,
则,
,
,
,
,
故选:C.
【点睛】
本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.
二、填空题
1、
【分析】
根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.
【详解】
解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.
故答案是:,,
【点睛】
主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
2、
【分析】
去括号再合并同类项即可.
【详解】
故答案为:
【点睛】
本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.
3、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
4、
【分析】
根据数轴可得b<0<a,根据有理数的加法法则可得b−a<0,再计算绝对值后化简即可求解.
【详解】
解:由数轴可得,
则,
则
.
故答案为:.
【点睛】
本题考查了数轴,绝对值,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.
5、22022 -1
【分析】
利用数字的排列规律得到第①行数的第n个数字为(-2)n,第②行数的第n个数字为(-2)n-1,第③行数的第n个数字为(-2)n-1-1(n为正整数),然后根据规律求解.
【详解】
解:∵-2,4,-8,16,﹣32,64,…,
∴第①行各数是:(-2)1,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…,
∴第①行第n个数是(-2)n,
∴第2022个数是22022;
∵第②行数是第①行对应数的-倍,
∴第②行第n个数是-×(-2)n=(-2)n-1;
∵第③行数比第②行对应数少1,
第③行第n个数是 (-2)n-1-1;
∴22022+(-2)2022-1+(-2)2022-1-1
=22022+(-2)2021+(-2)2021-1
=22022-22022-1
=-1.
故答案是:22022;1.
【点睛】
本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.
三、解答题
1、﹣8x2﹣15,-47
【解析】
【分析】
先去括号合并同类项,再把x=2代入计算.
【详解】
解:2(﹣4x2+2x﹣8)﹣(4x﹣1)
=﹣8x2+4x﹣16﹣4x+1
=﹣8x2﹣15,
∵x=2,
∴原式=﹣8×22﹣15
=﹣32﹣15
=﹣47.
【点睛】
本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
2、(1)-7;(2),55
【解析】
【分析】
(1)根据,即可得到;
(2)由题意得可得,然后求出x、y的值,最后代值计算即可.
【详解】
解:(1)∵,
∴;
(2)
,
∵,,
∴原式.
【点睛】
本题主要考查了有理数的四则运算,整式的化简求值,解题的关键在于正确理解题意.
3、-5+5xy,0
【解析】
【分析】
先去括号,后合并同类项,最后代入求值即可.
【详解】
原式=
=-5+5xy,
当x=1,y=-1时,
原式= -5×+5×1×(-1)
=0.
【点睛】
本题考查了去括号法则,合并同类项,正确去括号,合并同类项是解题的关键.
4、
【解析】
【分析】
先去括号,再根据合并同类项化简,最后将代入到化简后的结果进行计算即可
【详解】
解:
当时,原式
【点睛】
本题考查了整式的化简求值,正确的去括号是解题的关键.
5、(1)他们最终没有登上顶峰,他们离顶峰还差100米;(2)升
【解析】
【分析】
(1)根据题目中的数据,将它们相加,然后观察结果和500的大小,再作差即可;
(2)根据题意,可以计算出5名队员共消耗的氧气.
【详解】
解:(1)
(米,
(米,
答:他们最终没有登上顶峰,他们离顶峰还差100米;
(2)
升,
即他们共消耗了氧气升.
【点睛】
本题考查列代数式、正数和负数,解答本题的关键是明确题意,列出相应的式子.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试随堂练习题,共19页。试卷主要包含了下列运算正确的是,下列判断正确的是,下列说法不正确的是,下列等式成立的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列计算正确的是,下列式子正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版第六章 整式的运算综合与测试习题,共20页。试卷主要包含了多项式+1的次数是,下列各式中,计算结果为的是,下列计算正确的是等内容,欢迎下载使用。