初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题,共16页。试卷主要包含了下列运算正确的是,计算的结果是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知数a,b,c在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )
A.-a-c B.-a-b-c C.-a-2b-c D.a-2b+c
2、下列各式中,计算结果为的是( )
A. B.
C. D.
3、把多项式按的降幂排列,正确的是( )
A. B.
C. D.
4、关于单项式﹣,下列说法中正确的是( )
A.系数是﹣ B.次数是4 C.系数是﹣ D.次数是5
5、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).
A. B.
C. D.
6、如图所示,有一些点组成的三角形的图形,每条“边”(包括两个顶点)有n()个点,每个图形总的点数可以表示为s,当时,s的值是( )
A.36 B.33 C.30 D.27
7、下列运算正确的是( )
A. B. C. D.
8、计算的结果是( )
A. B. C. D.
9、计算的结果是( )
A. B. C. D.
10、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:_______
2、________________.
3、已知,两数在数轴上对应的点如图所示,化简的结果是___.
4、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
5、若多项式是关于a,b的五次多项式,则______.
三、解答题(5小题,每小题10分,共计50分)
1、化简求值 ,其中,
2、先化简后求值:,其中,.
3、先化简,再求值:,其中.
4、一辆大客车上原有人,中途有一半的乘客下车,又上来若干乘客,这时车上共有乘客人.
(1)求中途上车的乘客有多少人;(温馨提示:请用含有m,n的式子表示)
(2)当,时,中途上车的乘客有多少人?
5、阅读材料:若满足,求的值.
解:设,,则,,
所以
请仿照上例解决下面的问题:
(1)问题发现:若x满足,求的值;
(2)类比探究:若x满足.求的值;
(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).
---------参考答案-----------
一、单选题
1、C
【分析】
首先根据数轴可以得到a、b、c的正负和绝对值大小,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
解:通过数轴得到a<0,c>0,b>0,|a|>|c|>|b|,
∴a+b<0,a-b<0,a+c<0
∴|a+b| - |a-b| + |a+c|=-a-b+a-b﹣a-c=-a-2b-c,
故选:C.
【点睛】
本题主要考查了实数与数轴的对应关系、整式的加减法则及数形结合的方法,解题关键是准确判断a、b、c的正负和绝对值大小.
2、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
3、D
【分析】
先分清多项式的各项,然后按多项式降幂排列的定义排列.
【详解】
解:把多项式按的降幂排列:
,
故选:D
【点睛】
本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.
4、C
【分析】
根据单项式的基本性质:单项式的次数(单项式中所以字母的指数的和)、系数(单项式中的数字因式)的定义解答即可.
【详解】
解:单项式的系数是,次数是.
故选:C.
【点睛】
本题考查了单项式的次数和系数,深刻理解单项式的次数和系数的定义是解题关键.
5、C
【分析】
根据公式分别计算两个图形的面积,由此得到答案.
【详解】
解:正方形中阴影部分的面积为,
平行四边形的面积为x(x+2a),
由此得到一个x,a的恒等式是,
故选:C.
【点睛】
此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.
6、C
【分析】
当时,,当时,,当时,,当时,,可以推出当时,,由此求解即可.
【详解】
解:当时,,
当时,,
当时,,
当时,,
∴当时,,
∴当时,,
故选C.
【点睛】
本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.
7、B
【分析】
根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.
8、A
【分析】
先计算乘方,再计算除法,即可求解.
【详解】
解:.
故选:A
【点睛】
本题主要考查了幂的混合运算,熟练掌握幂的乘方,同底数相除的法则是解题的关键.
9、C
【分析】
根据同底数幂乘法的计算方法,即可得到答案.
【详解】
故选:C.
【点睛】
本题考查了同底数幂乘法的知识;解题的关键是熟练掌握同底数幂乘法的计算方法,从而完成求解.
10、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
二、填空题
1、
【分析】
先把原式化为,再计算乘方运算,再算乘法运算,即可得到答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是同底数幂的乘法的逆运算,积的乘方运算的逆运算,掌握“”是解本题的关键.
2、
【分析】
利用平方差公式直接求解即可求得答案.
【详解】
解:(a+2)(a-2)=.
故答案为:
【点睛】
本题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
3、
【分析】
根据数轴可得b<0<a,根据有理数的加法法则可得b−a<0,再计算绝对值后化简即可求解.
【详解】
解:由数轴可得,
则,
则
.
故答案为:.
【点睛】
本题考查了数轴,绝对值,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.
4、8
【分析】
设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.
【详解】
解:设长方形的长为a,宽为b,
由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①,
由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②,
由①②得,2ab+34=50, 所以ab=8,
即长方形的面积为8,
故答案为:8.
【点睛】
本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.
5、5或-3或5
【分析】
根据题意可得,进一步即得答案;
【详解】
解:因为多项式是关于a,b的五次多项式,
所以,
所以m=5或-3;
故答案为:5或-3
【点睛】
本题考查了多项式的相关概念,正确理解题意、掌握多项式的次数的概念是关键.
三、解答题
1、+y,-17
【解析】
【分析】
根据整式加减的运算法则“一般地,几个整式相加减,如果有括号就先去括号,然后合并同类项”进行解答即可得.
【详解】
解:原式=
=,
当,时,.
【点睛】
本题考查了整式的化简求值,解题的关键是掌握整式加减的运算法则.
2、,10
【解析】
【分析】
由题意先根据整式的加减运算法则进行化简,进而,代入原式即可求值.
【详解】
解:
当,时,原式.
【点睛】
本题考查整式的加减,熟练掌握整式的加减运算法则是解题的关键.
3、,
【解析】
【分析】
先去括号,然后合并同类项,最后将代入求解即可.
【详解】
解:
,
当时,原式
.
【点睛】
此题考查了整式的混合运算化简求值问题,熟练掌握去括号、合并同类项法则是解本题的关键.
4、(1);(2)18
【解析】
【分析】
(1)根据等量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,即可求解;
(2)把,代入上式可得上车乘客人数.
【详解】
∵车上现有人数=车上原有乘客数-中途下车人数+上车人数
∴=+中途上车人数
∴中途上车人数==
(2)把,代入得
即当,时,中途上车的乘客有18人.
【点睛】
本题考查了整式的加减,要分析透题中的数量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,用代数式表示各个量后代入即可.
5、(1)21;(2)1009.5;(3)900
【解析】
【分析】
(1)令a=3-x,b=x-2,整体代入后利用完全平方和公式求解;
(2)令a=2021-x,b=2020-x,再利用完全平方差公式求代数式的值;
(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP的面积.
【详解】
解:(1)设a=3-x,b=x-2,
∴ab=-10,a+b=1,
∴(3-x)2+(x-2)2,
=a2+b2
=(a+b)2-2ab
=12-2×(-10)
=21;
(2)设a=2022-x,b=2021-x,
∴a-b=1,a2+b2=2020,
∴=ab=−[(a−b)2−(a2+b2)]=−×(12−2020)=1009.5;
(3)∵EF=DG=x-20,ED=FG=x-10,
∵四边形MEDQ与NGDH为正方形,四边形QDHP为长方形,
∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD,
∴FN=(x-10)+(x-20),
∴MF=NF,
∴四边形MFNP为正方形,
设a=x-20,b=x-10,
∴a-b=-10,
∵SEFGD=200,
∴ab=200,
∴SMFNP=(a+b)2=(a-b)2+4ab=(-10)2+4×200=900.
【点睛】
本题考查了整体思想和完全平方公式的应用,在解题的时候关键是用换元的方法将给定的式子和所求的式子进行替换,这样会更加容易看出来已知条件和所求之间的关系.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了下列计算中,正确的是,多项式的次数和常数项分别是,已知,下列运算正确的是,下列计算正确的有等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列说法正确的是,计算的结果是,下列计算正确的有,下列说法中等内容,欢迎下载使用。
这是一份七年级下册第六章 整式的运算综合与测试复习练习题,共20页。试卷主要包含了下列各式中,计算结果为的是,下列式子正确的是,下列计算中,结果正确的是,下列计算正确的是等内容,欢迎下载使用。