2020-2021学年第六章 整式的运算综合与测试当堂达标检测题
展开
这是一份2020-2021学年第六章 整式的运算综合与测试当堂达标检测题,共18页。试卷主要包含了多项式的次数和常数项分别是,下列计算正确的有,下列运算正确的是,一同学做一道数学题等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作10次,则M10N10=( )A.2 B. C. D.2、下列说法正确的是( )A.单项式的次数是3,系数是B.多项式的各项分别是,,5C.是一元一次方程D.单项式与能合并3、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.114、多项式的次数和常数项分别是( )A.1和 B.和 C.2和 D.3和5、下列计算正确的有( )① ② ③ ④A.3个 B.2个 C.1个 D.0个6、下列运算正确的是( )A. B.C. D.7、下列运算正确的是( )A. B. C. D.8、一同学做一道数学题:“已知两个多项式,,其中,求”,这位同学却把看成,求出的结果是,那么多项式是( )A. B.C. D.9、下列运算正确的是( )A. B.C. D.10、下列运算中正确的是( )A.b2•b3=b6 B.(2x+y)2=4x2+y2C.(﹣3x2y)3=﹣27x6y3 D.x+x=x2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多项式减去等于x-1,则这个多项式是______.2、规定:符号叫做取整符号,它表示不超过的最大整数,例如:,,.现在有一列非负数,,,,已知,当时,,则的值为_____.3、已知x-2y+3=0,则代数式4y-2x-1的值为________.4、一张长方形桌子可坐6人,按下图方式将桌子拼在一起张桌子拼在一起可坐8人,n张桌子拼在一起可坐______人.(用含n的式子表示)5、若多项式3xa+3﹣x3﹣a+4是四次三项式,则a=____.三、解答题(5小题,每小题10分,共计50分)1、若,求的值.2、直接写出计算结果(1)5+5÷(﹣5)= ;(2)﹣24×(﹣1)= ;(3)(ab2)2= ;(4)x2yx2y= .3、在数学习题课中,同学们为了求的值,进行了如下探索:(1)某同学设计如图1所示的几何图形,将一个面积为1的长方形纸片对折.(I)求图1中部分④的面积;(II)请你利用图形求的值;(III)受此启发,请求出的值;(2)请你利用备用图,再设计一个能求与的值的几何图形.4、化简求值:(1)化简:2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2;(2)求值:当(x+2)2+|y+1|=0时,求(1)中式子的值.5、先化简,再求值:,其中,. ---------参考答案-----------一、单选题1、C【分析】根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,从而找到MnNn的规律,即可求出结果.【详解】解:∵线段MN=20,线段AM和AN的中点M1,N1,∴M1N1=AM1﹣AN1=AM﹣AN=(AM﹣AN)=MN=×20=10.∵线段AM1和AN1的中点M2,N2;∴M2N2=AM2﹣AN2=AM1﹣AN1=(AM1﹣AN1)=M1N1=××20=×20=5.发现规律:MnNn=×20,∴M10N10=×20.故选:C.【点睛】本题考查两点间的距离,根据线段中点的定义得出MnNn=×20是解题关键.2、C【分析】根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可.【详解】A. 单项式的次数是4,系数是,故该选项错误,不符合题意;B. 多项式的各项分别是、、-5,故该选项错误,不符合题意;C. 是一元一次方程,正确,符合题意;D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意.故选:C.【点睛】本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项.正确掌握各定义是解答本题的关键.3、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.4、D【分析】多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.【详解】解:有题意可知多项式的次数为3,常数项为故选D.【点睛】本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.5、B【分析】括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.【详解】解:,所以正确,符合题意;,所以错误,不符合题意;,所以错误,不符合题意; ,所以正确,符合题意.故选B.【点睛】本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.6、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.7、C【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【详解】A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、,计算正确,故本选项正确;D、(,故本选项错误.故选:C.【点睛】本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键.8、A【分析】由,,代入计算即可求出A的值.【详解】解:∵,由题意知:,则:A=,A=,=,故选:A【点睛】本题主要考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.9、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. ,故该选项错误, B. ,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.10、C【分析】根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.【详解】解:A、b2•b3=b5,不符合题意;B、(2x+y)2=4x2+4xy+y2,不符合题意;C、(﹣3x2y)3=﹣27x6y3,符合题意;D、x+x=2x,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.二、填空题1、【分析】由一个多项式减去等于x-1,求这个多项式,可列式为再合并同类项即可.【详解】解:一个多项式减去等于x-1,所以这个多项式为: 故答案为:【点睛】本题考查的是减法的意义,整式的加减运算,正确的列出运算式进行计算是解本题的关键.2、11【分析】根据题意求出a1,a2,a3,…,的变化规律,根据规律即可求出a2022的值.【详解】解:根据题意可得:当n=1时,得a1=10,当n=2时,得=11,当n=3时,得=12,当n=4时,得=13,当n=5时,得=14,当n=6时,得=10,.....,∴a1,a2,a3,…的变化规律是每五个数一循环,∵2022÷5=404…2,∴a2022=a2=11,故答案为:11.【点睛】本题主要考查取整函数的定义和应用,关键是能根据取整函数的定义找出a1,a2,a3,…,的变化规律.3、5【分析】先根据已知等式可得,再将其作为整体代入计算即可得.【详解】解:由得:,则,,,故答案为:5.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.4、 (2n+4)n)【分析】根据图形得出2张桌子,3张桌子拼在一起可坐的人数,然后得出每多一张桌子可多坐2人的规律,进而求出n张桌子拼在一起可坐的人数.【详解】解:由图可知,1张长方形桌子可坐6人,6=2×1+4,2张桌子拼在一起可坐8人,8=2×2+4,3张桌子拼在一起可坐10人,10=2×3+4,…依此类推,每多一张桌子可多坐2人,∴n张桌子拼在一起可坐(2n+4)人.故答案为 (2n+4).【点睛】考查图形的变化规律,根据图形,观察得出每多一张桌子可多坐2人的规律,求出n张桌子拼在一起可坐人数的表达式是解题的关键.5、﹣【分析】根据题意可得:①a+3=4,4≥3−a≥0,②3−a=4,且4≥a+3≥0,再解方程和不等式可得答案.【详解】解:由题意得:①a+3=4,4≥3﹣a≥0,解得:a=1,②3﹣a=4,且4≥a+3≥0,解得:a=﹣1,故答案为:﹣1或1.【点睛】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.三、解答题1、25【解析】【分析】首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.【详解】解:∵,∴x2−2x+1+y2+6y+9=0,∴(x−1)2+(y+3)2=0,∴x−1=0,y+3=0,∴x=1,y=−3,∴(2x−y)2=(2+3)2=25.【点睛】此题主要考查了配方法的运用,非负数的性质,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.2、(1)4;(2)44;(3)a2b4;(4)x2y【解析】【分析】(1)先算除法,再算加减即可;(2)先把带分数化为假分数,在计算乘法即可;(3)根据积的乘方和幂的乘方计算即可;(4)根据合并同类项的法则计算即可;【详解】(1)原式;(2)原式;(3)原式;(4)原式;【点睛】本题主要考查了有理数的混合运算,积的乘方和幂的乘方,合并同类项,准确计算是解题的关键.3、(1)(I);(II);(III);(2)见解析.【解析】【分析】(1)(ⅰ)根据题目中的图形和题意,计算出部分④的面积即可;(ⅱ)根据图形,可以所求式子的值即可;(ⅲ)根据(2)中的结果,直接写出所求式子的值即可;(2)将长方形分成两个全等的三角形,然后继续分割两个小一点的全等三角形,依次继续分割即可即可解答(答案不唯一).【详解】解:(1)(ⅰ)由题意可得,部分④的面积是;(ⅱ)由题意可得:;(ⅲ)根据(2)中的结果,可推到出:=;(2)可设计如图所示:(答案不唯一,符合题意即可).【点睛】本题主要考查了数字的变化规律、有理数的混合运算等知识点,明确题意并灵活利用数形结合的思想是解答本题的关键.4、(1)﹣x2y;(2)4【解析】【分析】(1)原式去括号合并同类项即可得到结果;(2)利用非负数的性质求出x与y的值,代入原式计算即可求出值.【详解】解:(1)2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2=2x2y﹣2xy2﹣3x2y﹣3xy2+5xy2=﹣x2y;(2)∵(x+2)2+|y+1|=0,∴x+2=0,y+1=0,解得:x=﹣2,y=﹣1,则﹣x2y=﹣(﹣2)2×(﹣1)=4.【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号与合并同类项法则是解本题的关键.5、;【解析】【分析】去括号得,将代入求值即可.【详解】解:原式 , 当时,原式.【点睛】本题考查了整式加减中的去括号.解题的关键在于去括号时正负号的确定.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了下列说法不正确的是,下列运算正确的是,下列结论中,正确的是,计算的结果是,下列计算正确的是等内容,欢迎下载使用。
这是一份数学北京课改版第六章 整式的运算综合与测试课后作业题,共16页。试卷主要包含了下列计算正确的是,下面说法正确的是,下列运算正确的是,下列各式中,计算结果为的是,下列各式中,计算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后作业题,共20页。试卷主要包含了下列运算中正确的是,下列运算正确的是,下列去括号正确的是.,下列数字的排列等内容,欢迎下载使用。