初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习,共18页。试卷主要包含了已知下列一组数,下列叙述中,正确的是,有理数a等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是( )A.的系数是 B.2不是单项式C.单项式的次数是2 D.是多项式2、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.113、把式子去括号后正确的是( )A. B. C. D.4、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )A. B. C. D.5、下列叙述中,正确的是( )A.单项式的系数是B.a,π,52都是单项式C.多项式3a3b+2a2﹣1的常数项是1D.是单项式6、已知,m,n均为正整数,则的值为( ).A. B. C. D.7、有理数a、b在数轴上的位置如图所示,则|a|﹣|a+b|﹣|b﹣a|化简后得( )A.2b+a B.2b﹣a C.a D.b8、观察图中点阵,发现第①个图中有5个点,第②个图中有12个点,第③个图中有22个点,第④个图中有35个点,…,按此规律,则第⑩个图有( )个点A.145 B.176 C.187 D.2109、已知数a,b,c在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A.-a-c B.-a-b-c C.-a-2b-c D.a-2b+c10、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.599第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式按x的升幂重新排列____________.2、多项式的次数是____次,它的常数项是____.3、已知x-2y+3=0,则代数式4y-2x-1的值为________.4、若,,则的值为________________.5、已知,则_______.三、解答题(5小题,每小题10分,共计50分)1、在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式的二次项系数,b是绝对值最小的数,c是单项式的次数.请直接写出a、b、c的值并在数轴上把点A,B,C表示出来.2、先化简,再求值:(1)3(2x2﹣xy)﹣4(﹣6+xy+x2),其中x=1,y=﹣1.(2)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.3、先化简,再求值:,其中.4、(1)如表,方程1,方程2,方程3,...是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的横线处;序号方程方程的解1﹣(x﹣2)=1x= 2﹣(x﹣3)=1x=3x=.........(2)方程﹣(x﹣a)=1的解是x=,求a的值.该方程是不是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?5、若,求的值. ---------参考答案-----------一、单选题1、B【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.【详解】解:的系数是,故A不符合题意;2是单项式,原说法错误,故B符合题意;单项式的次数是2,故C不符合题意;是多项式,故D不符合题意;故选B【点睛】本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.2、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.3、C【分析】由去括号法则进行化简,即可得到答案.【详解】解:,故选:C【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.4、B【分析】根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.【详解】解:∵1=;;;∴第n个数是:.故选:B.【点睛】本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5、B【分析】根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.【详解】解:A.单项式的系数是,故本选项不符合题意;B.a,π,52都是单项式,故本选项符合题意;C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;D.是多项式,不是单项式,故本选项不符合题意;故选:B.【点睛】本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.6、C【分析】根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.【详解】解:∵∴故选C【点睛】本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.7、C【分析】根据图判断a,a+b,b-a的符号,根据绝对值,合并同类项法则化简即可求解.【详解】解:∵a<0<b,且>,∴a<0,a+b<0,b-a>0,∴|a|-|a+b|-| b-a |=-a+a+b-(b-a)=-a+a+b-b+a=a,故选:C.【点睛】本题考查了整式的加减,利用绝对值的意义,合并同类项的法则,解题关键是利用数轴判断绝对值内式子的符号.8、B【分析】根据已知图形得第个图形中黑点数为,据此求解可得.【详解】解:图①中黑点的个数,图②中黑点的个数,图③中黑点的个数,第个图形中黑点的个数为,第⑩个图形中黑点的个数为.故选:B.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第个图形中黑点的个数为.9、C【分析】首先根据数轴可以得到a、b、c的正负和绝对值大小,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c>0,b>0,|a|>|c|>|b|,∴a+b<0,a-b<0,a+c<0∴|a+b| - |a-b| + |a+c|=-a-b+a-b﹣a-c=-a-2b-c,故选:C.【点睛】本题主要考查了实数与数轴的对应关系、整式的加减法则及数形结合的方法,解题关键是准确判断a、b、c的正负和绝对值大小.10、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.二、填空题1、y3-4xy2-7x2y-x3【分析】先分清多项式的各项,然后按多项式中x的升幂排列的定义排列.【详解】解:多项式-x3+y3-4xy2-7x2y的各项为-x3,y3,-4xy2,-7x2y,按x的升幂排列为:y3-4xy2-7x2y-x3.故答案为:y3-4xy2-7x2y-x3.【点睛】本题考查了多项式的升序或降序排列.解题的关键是掌握多项式的升序或降序排列的方法,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.2、3 -5 【分析】根据多项式中常数项(多项式中,不含字母的项即为常数项)和次数(多项式中最高次项的次数)的定义求解即可.【详解】解:中,次数是3次,常数项为-5,故答案为:3;-5.【点睛】题目主要考查多项式中常数项与次数的定义,理解这两个定义是解题关键.3、5【分析】先根据已知等式可得,再将其作为整体代入计算即可得.【详解】解:由得:,则,,,故答案为:5.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.4、19【分析】根据公式=计算.【详解】∵,∴=,∴==19,故答案为:19.【点睛】本题考查了完全平方公式的变形应用,灵活进行公式变形是解题的关键.5、32【分析】根据幂的乘方进行解答即可.【详解】解:由2x+5y-3=2可得:2x+5y=5,
所以4x•32y=22x+5y=25=32,
故答案为:32.【点睛】本题考查幂的乘方,关键是根据幂的乘方法则解答.三、解答题1、,,,见解析【解析】【分析】根据多项式中次数为2的单项式中的数字因数得出a=-1,根据绝对值最小的数是0得出b=0,根据单项式的次数是所有字母的指数和2+1=3,得出c=2+1=3,再把各数在数轴上表示即可.【详解】解:∵a是多项式的二次项系数,∴a=-1,∵b是绝对值最小的数,∴b=0,∵c是单项式的次数.∴c=2+1=3,,将各数在数轴上表示如下: 【点睛】本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.2、(1)2x2﹣7xy+24,33;(2)5xy+y2,-6【解析】【分析】(1)先去括号,再合并同类项把原式化简,最后代入计算即可.(2)先去括号,再合并同类项把原式化简,最后代入计算即可.【详解】(1)解:原式=6x2﹣3xy+24﹣4xy﹣4x2=2x2﹣7xy+24,当x=1,y=﹣1时,原式=2×12﹣7×1×(﹣1)+24=2+7+24=33.(2)原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=1,y=﹣2时,原式=5×1×(﹣2)+(﹣2)2=﹣10+4=﹣6.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.3、,2【解析】【分析】先将原多项式化简,再将代入,即可求解.【详解】解: ,当时,原式 .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.4、(1);(2),方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【解析】【分析】(1)根据去括号,移项,合并,系数化为1的步骤求解即可;(2)把代入方程中求出a的值,然后找出(1)中方程的规律即可得到答案.【详解】解:(1)去括号得:,移项得:,合并得:,系数化为1得:,故答案为:;(2)∵方程的解是,∴,∴,解得,∵方程的解为,方程的解为,方程的解为,∴方程的解为,∴方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【点睛】本题主要考查了解一元一次方程,数字类的规律型探索,解题的关键在于能够熟练掌握解一元一次方程的方法.5、25【解析】【分析】首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.【详解】解:∵,∴x2−2x+1+y2+6y+9=0,∴(x−1)2+(y+3)2=0,∴x−1=0,y+3=0,∴x=1,y=−3,∴(2x−y)2=(2+3)2=25.【点睛】此题主要考查了配方法的运用,非负数的性质,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试一课一练,共17页。试卷主要包含了下列判断正确的是,下列表述正确的是,下列叙述中,正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列运算正确的是,下列计算中,结果正确的是,下列运算中正确的是,下列等式成立的是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试精练,共15页。试卷主要包含了下列运算正确的是,计算的结果是,有理数a等内容,欢迎下载使用。