2020-2021学年第六章 整式的运算综合与测试同步达标检测题
展开这是一份2020-2021学年第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列结论中,正确的是,下列运算正确的是,观察下列这列式子等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x2
2、下列计算正确的是( )
A.a+b=ab B.7a+a=7a2
C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b
3、下列运算正确的是( )
A. B. C. D.
4、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).
A. B.
C. D.
5、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.单项式m的次数是1,没有系数
C.多项式x2+y2﹣1的常数项是1
D.多项式x2+2x+18是二次三项式
6、下列运算正确的是( )
A. B. C. D.
7、观察下列这列式子:,,,,,…,则第n个式子是( )
A. B.
C. D.
8、若x2+mxy+25y2是一个完全平方式,那么m的值是( )
A.±10 B.-5 C.5 D.±5
9、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )
A.左侧1010厘米 B.右侧1010厘米
C.左侧1011厘米 D.右侧1011厘米
10、下列运算正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若代数式2a-b的值为3,则代数式4a-2b+1的值是_______.
2、减去等于的多项式是______.
3、若关于、的多项式是二次三项式,则_______.
4、比较大小:____
5、化简得______.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中,.
2、在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式的二次项系数,b是绝对值最小的数,c是单项式的次数.请直接写出a、b、c的值并在数轴上把点A,B,C表示出来.
3、计算:.
4、阅读材料:若满足,求的值.
解:设,,则,,
所以
请仿照上例解决下面的问题:
(1)问题发现:若x满足,求的值;
(2)类比探究:若x满足.求的值;
(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).
5、先化简,再求值:,其中.
---------参考答案-----------
一、单选题
1、C
【分析】
根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.
【详解】
解:A、 ,故本选项错误,不符合题意;
B、 ,故本选项错误,不符合题意;
C、 ,故本选项正确,符合题意;
D、 ,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.
2、C
【分析】
根据整式的加减运算法则和去括号法则即可求出答案.
【详解】
解:A、a与b不是同类项,故不能合并,故A不符合题意.
B、7a+a=8a,故B不符合题意.
C、3x2y﹣2yx2=x2y,故C符合题意.
D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.
故选C.
【点睛】
本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.
3、A
【分析】
根据整式的加减运算、同底数幂的乘除运算,幂的乘方运算,求解即可.
【详解】
解:A、,选项正确,符合题意;
B、,选项错误,不符合题意;
C、,选项错误,不符合题意;
D、,选项错误,不符合题意;
故选:A
【点睛】
此题考查了整式的加减运算、同底数幂的乘除运算,幂的乘方运算,解题的关键是掌握整式的有关运算法则.
4、C
【分析】
根据公式分别计算两个图形的面积,由此得到答案.
【详解】
解:正方形中阴影部分的面积为,
平行四边形的面积为x(x+2a),
由此得到一个x,a的恒等式是,
故选:C.
【点睛】
此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.
5、D
【详解】
根据单项式和多项式的相关定义解答即可得出答案.
【分析】
解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;
B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;
C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;
D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.
故选D.
【点睛】
本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
6、B
【分析】
由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
,故B符合题意;
故C不符合题意;
故D不符合题意;
故选B
【点睛】
本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.
7、C
【分析】
根据题意得:第1个式子:,第2个式子:,第3个式子:,第4个式子:,第5个式子:,…,由此发现规律,即可求解 .
【详解】
解:根据题意得:第1个式子:,
第2个式子:,
第3个式子:,
第4个式子:,
第5个式子:,
…,
由此发现,第 个式子: .
故选:C
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
8、A
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x2+mxy+25y2=x2+mxy+(5y)2,
∴mxy=±2x×5y,
解得:m=±10.
故选:A.
【点睛】
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.
9、D
【分析】
由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.
【详解】
解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,
则此时对应的数为:
第三次向左移动3厘米,第四次向右移动4厘米,
则此时对应的数为:
所以每两次移动的结果是往右移动了1个单位长度,
所以移动第2022次到达点B,则对应的数为:
所以点B在点A点的右侧1011厘米处.
故选D
【点睛】
本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
10、B
【分析】
根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.
二、填空题
1、7
【分析】
代数式中4a-2b是2a-b的2倍,故用整体代入法即可解决.
【详解】
4a-2b+1=2(2a-b)+1=2×3+1=7
故答案为:7
【点睛】
本题考查了求代数式的值,运用整体思想是解答本题的关键.
2、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
3、
【分析】
直接利用多项式系数与次数确定方法得出−2m−1=0,进而得出答案.
【详解】
解:∵关于x、y的多项式2x2+3mxy−y2−xy−5是二次三项式,
∴3mxy−xy=0,
则3m−1=0,
解得:m=.
故答案为:.
【点睛】
此题主要考查了多项式,正确掌握相关定义是解题关键.
4、
【分析】
把它们化为指数相同的幂,再比较大小即可.
【详解】
解:∵2444=(24)111=16111,3333=(33)111=27111,
而16111<27111,
∴2444<3333,
故答案为:<.
【点睛】
本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.
5、
【分析】
去括号再合并同类项即可.
【详解】
故答案为:
【点睛】
本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.
三、解答题
1、
【解析】
【分析】
先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.
【详解】
解:
当,时,
原式.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.
2、,,,见解析
【解析】
【分析】
根据多项式中次数为2的单项式中的数字因数得出a=-1,根据绝对值最小的数是0得出b=0,根据单项式的次数是所有字母的指数和2+1=3,得出c=2+1=3,再把各数在数轴上表示即可.
【详解】
解:∵a是多项式的二次项系数,
∴a=-1,
∵b是绝对值最小的数,
∴b=0,
∵c是单项式的次数.
∴c=2+1=3,,
将各数在数轴上表示如下:
【点睛】
本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.
3、
【解析】
【分析】
根据整式的乘法运算法则、合并同类项法则进行计算即可.
【详解】
解:
=
=.
【点睛】
本题考查整式的乘除、合并同类项,熟练掌握运算法则是解答的关键.
4、(1)21;(2)1009.5;(3)900
【解析】
【分析】
(1)令a=3-x,b=x-2,整体代入后利用完全平方和公式求解;
(2)令a=2021-x,b=2020-x,再利用完全平方差公式求代数式的值;
(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP的面积.
【详解】
解:(1)设a=3-x,b=x-2,
∴ab=-10,a+b=1,
∴(3-x)2+(x-2)2,
=a2+b2
=(a+b)2-2ab
=12-2×(-10)
=21;
(2)设a=2022-x,b=2021-x,
∴a-b=1,a2+b2=2020,
∴=ab=−[(a−b)2−(a2+b2)]=−×(12−2020)=1009.5;
(3)∵EF=DG=x-20,ED=FG=x-10,
∵四边形MEDQ与NGDH为正方形,四边形QDHP为长方形,
∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD,
∴FN=(x-10)+(x-20),
∴MF=NF,
∴四边形MFNP为正方形,
设a=x-20,b=x-10,
∴a-b=-10,
∵SEFGD=200,
∴ab=200,
∴SMFNP=(a+b)2=(a-b)2+4ab=(-10)2+4×200=900.
【点睛】
本题考查了整体思想和完全平方公式的应用,在解题的时候关键是用换元的方法将给定的式子和所求的式子进行替换,这样会更加容易看出来已知条件和所求之间的关系.
5、,2
【解析】
【分析】
先去括号,合并同类项,再将未知数的值代入计算.
【详解】
解:原式=
=,
当时,原式=2.
【点睛】
此题考查了整式的化简求值,掌握整式的加减法计算法则是解题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算中正确的是,下列运算正确的是,多项式+1的次数是,计算的结果是,已知整数等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题,共16页。试卷主要包含了已知整数,下列计算正确的是,已知,,则,下列运算正确的是,把式子去括号后正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后测评,共16页。试卷主要包含了下面说法正确的是,下列计算正确的是,下列结论中,正确的是,计算的结果是等内容,欢迎下载使用。