七年级下册第六章 整式的运算综合与测试课堂检测
展开这是一份七年级下册第六章 整式的运算综合与测试课堂检测,共17页。试卷主要包含了下面说法正确的是,用“※”定义一种新运算,下列说法正确的是,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算不正确的是( )
A. B. C. D.
2、下列计算正确的是( )
A. B.
C. D.
3、观察图中点阵,发现第①个图中有5个点,第②个图中有12个点,第③个图中有22个点,第④个图中有35个点,…,按此规律,则第⑩个图有( )个点
A.145 B.176 C.187 D.210
4、下面说法正确的是( )
A.倒数等于它本身的数是1
B.是最大的负整数
C.单项式的系数是,次数是2
D.与是同类项
5、已知数a,b,c在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )
A.-a-c B.-a-b-c C.-a-2b-c D.a-2b+c
6、用“※”定义一种新运算:对于任何有理数a和b,规定.如,则的值为( )
A.-4 B.8 C.4 D.-8
7、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
8、下列运算正确的是( )
A.(a2)3=a6 B.a2•a3=a6
C.a7÷a=a7 D.(﹣2a2)3=8a6
9、下列计算正确的是( )
A.a+b=ab B.7a+a=7a2
C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b
10、下列运算正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、单项式的系数是____________
2、观察下列三行数,并完成填空:
①﹣2,4,﹣8,16,﹣32,64,…
②1,﹣2,4,﹣8,16,﹣32,…
③0,﹣3,3,﹣9,15,﹣33,…
第①行数按一定规律排列,第2022个数是_____;若取每行数的第2022个数,计算这三个数的和为_____.
3、黑白两种颜色的纸片,按如图所示的规律拼成若干个图案,第n个图形有白纸片____________张.
4、(1)单项式﹣x2y的系数是________,次数是________.(2)在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有_______(只填序号).
5、单项式﹣a2h的次数为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、将四个数a,b,c,d排列成2行,2列,记作,定义=ad-bc,上述记号就叫2阶行列式.
(1)根据定义,化简;
(2)请将(1)中的化简结果因式分解;
(3)请直接写出(1)中化简结果有最 值(填“大”或“小”),是 .
2、已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.
3、(1)合并同类项:﹣3x+2y﹣5x﹣7y
(2)化简求值:(8mn﹣3m2)﹣5mn﹣2(3nm﹣2m2),其中m=﹣1,n=﹣2
4、先化简后求值:,其中,.
5、先化简,再求值:,其中,b=-3.
---------参考答案-----------
一、单选题
1、C
【分析】
根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可直接进行排除选项.
【详解】
解:A、,原选项正确,故不符合题意;
B、,原选项正确,故不符合题意;
C、与不是同类项,不能合并,原选项错误,故符合题意;
D、,原选项正确,故不符合题意;
故选C.
【点睛】
本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项是解题的关键.
2、C
【分析】
由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
故B不符合题意;
,运算正确,故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.
3、B
【分析】
根据已知图形得第个图形中黑点数为,据此求解可得.
【详解】
解:图①中黑点的个数,
图②中黑点的个数,
图③中黑点的个数,
第个图形中黑点的个数为,
第⑩个图形中黑点的个数为.
故选:B.
【点睛】
本题主要考查图形的变化规律,解题的关键是根据已知图形得出第个图形中黑点的个数为.
4、B
【分析】
选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:.倒数等于它本身的数是,故本选项不合题意;
.是最大的负整数,正确,故本选项符合题意;
.单项式的系数是,次数是3,故本选项不合题意;
.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;
故选:.
【点睛】
本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.
5、C
【分析】
首先根据数轴可以得到a、b、c的正负和绝对值大小,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
解:通过数轴得到a<0,c>0,b>0,|a|>|c|>|b|,
∴a+b<0,a-b<0,a+c<0
∴|a+b| - |a-b| + |a+c|=-a-b+a-b﹣a-c=-a-2b-c,
故选:C.
【点睛】
本题主要考查了实数与数轴的对应关系、整式的加减法则及数形结合的方法,解题关键是准确判断a、b、c的正负和绝对值大小.
6、A
【分析】
根据定义的新运算法则代入计算即可.
【详解】
解:,
∴,
故选:A.
【点睛】
题目主要考查计算代数式的值,理解题目中心定义的运算是解题关键.
7、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
8、A
【分析】
根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.
【详解】
解:A、,原选项正确,故符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项错误,故不符合题意;
故选A.
【点睛】
本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.
9、C
【分析】
根据整式的加减运算法则和去括号法则即可求出答案.
【详解】
解:A、a与b不是同类项,故不能合并,故A不符合题意.
B、7a+a=8a,故B不符合题意.
C、3x2y﹣2yx2=x2y,故C符合题意.
D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.
故选C.
【点睛】
本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.
10、B
【分析】
由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
,故B符合题意;
故C不符合题意;
故D不符合题意;
故选B
【点睛】
本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.
二、填空题
1、-
【分析】
根据单项式的次数的定义(单项式中的数字因数是单项式的系数)解决此题.
【详解】
解:单项式的系数是,
故答案为:.
【点睛】
本题主要考查单项式的系数,熟练掌握单项式的系数的定义是解决本题的关键.
2、22022 -1
【分析】
利用数字的排列规律得到第①行数的第n个数字为(-2)n,第②行数的第n个数字为(-2)n-1,第③行数的第n个数字为(-2)n-1-1(n为正整数),然后根据规律求解.
【详解】
解:∵-2,4,-8,16,﹣32,64,…,
∴第①行各数是:(-2)1,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…,
∴第①行第n个数是(-2)n,
∴第2022个数是22022;
∵第②行数是第①行对应数的-倍,
∴第②行第n个数是-×(-2)n=(-2)n-1;
∵第③行数比第②行对应数少1,
第③行第n个数是 (-2)n-1-1;
∴22022+(-2)2022-1+(-2)2022-1-1
=22022+(-2)2021+(-2)2021-1
=22022-22022-1
=-1.
故答案是:22022;1.
【点睛】
本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.
3、(3n+1)n)
【分析】
先求出每一个图形的白色纸片的块数,找出规律,后一个图形比前一个图形的白色纸片多3块,然后总结出第n个图形的表示纸片的块数;
【详解】
解:第1个图形有白色纸片有:4=3+1块,
第2个图形有白色纸片有:7=3×2+1块,
第3个图形有白色纸片有:10=3×3+1块,
…,
第n个图形有白色纸片:3n+1块,
故答案为:(3n+1).
【点睛】
本题考查了图形的变化规律,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.
4、 ③④
【分析】
(1)根据单项式次数和系数的定义求解即可;
(2)根据一元一次方程的定义求解即可.
【详解】
解:(1)单项式﹣x2y的系数是,次数是,
故答案为:,;
(2)在下列方程中:①x+2y=3含有两个未知数,不是一元一次方程;
②不是整式方程,不是一元一次方程;
③,是一元一次方程;
④是一元一次方程,
∴是一元一次方程的有③④,
故答案为:③④.
【点睛】
本题主要了单项式系数和次数的定义,一元一次方程的定义,熟知定义是解题的关键:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;只含有一个未知数,且未知数的最高次为1的整式方程叫做一元一次方程.
5、3
【分析】
直接根据一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.
【详解】
解:单项式﹣a2h的次数是:2+1=3.
故答案为:3.
【点睛】
此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.
三、解答题
1、(1);(2);(3)小,
【解析】
【分析】
(1)已知等式利用题中的新定义化简即可;
(2)已知等式利用题中的新定义化简,计算即可求出x的值;
(3)根据中,=0时有最值可得结论.
【详解】
解:(1)原式=(3x+2)2-(x+2)(x+10)
= 9x2+12x+4-(x2+12x+20)
= 8x2-16;
(2)8x2-16 =8(x2-2);
(3)由(1)得8x2-16,当8x2=0时有最小值,是-16.
【点睛】
本题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.
2、3
【解析】
【分析】
先去括号,然后合并同类项化简,最后将已知式子的值代入求解即可.
【详解】
解:,
,
,
,
当,时,
原式,
.
【点睛】
题目主要考查整式的化简求值,熟练掌握整式的化简方法是解题关键.
3、(1);(2);.
【解析】
【分析】
(1)直接根据合并同类项法则进行计算即可;
(2)根据整式的加减运算法则将原式进行化简,代入计算即可.
【详解】
解:(1)原式=
=
=;
(2)原式=
=
=
=,
当m=﹣1,n=﹣2,
原式=.
【点睛】
本题考查了整式的加减以及化简求值,熟练掌握整式的加减运算法则是解本题的关键.
4、,10
【解析】
【分析】
由题意先根据整式的加减运算法则进行化简,进而,代入原式即可求值.
【详解】
解:
当,时,原式.
【点睛】
本题考查整式的加减,熟练掌握整式的加减运算法则是解题的关键.
5、,.
【解析】
【分析】
原式去括号合并得到最简结果,把、的值代入计算即可求值.
【详解】
解:,
,
,
∵当,b=-3时,原式.
【点睛】
此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共19页。试卷主要包含了下列计算正确的是,下列运算正确的是,下列各式运算的结果可以表示为等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下列结论中,正确的是,已知整数,下列计算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习,共15页。试卷主要包含了下列运算正确的是,已知下列一组数,下列数字的排列等内容,欢迎下载使用。